Evolving autonomous agents with

simulated brains using L2L and Netlogo

A thesis submitted for the degree of

Bachelor of Science

Jessica Yu

Submission date: 2021-09-20

Supervisor: Prof. Dr. Abigail Morrison
Advisors: Dr. Cristian Jimenez-Romero
Alper Yegenoglu

Examiners: Prof. Dr. Abigail Morrison

Prof. Dr. Peter Rossmanith

Department of Computation in Neural Circuits
RWTH Aachen University

Germany

CONTENTS 2
Contents

Il Introductiod 4

h 1 Motivationl 5

|1.2 Overviewl 6

|1.3 Related Work] 7

.............................. 9

|2 Genetic Algorithmsi 10

|2.1 Evolution-inspired algorithmsl 10

|2.2 A genetic algorithm cyclel 10

|2.3 Hyperparametersl 12

E Model 13

3.1 Virtual insect environmentl 13

I3.2 Spiking neural networkl 14

I3.2.1 Architecturd 14

B.2.2 Neural dynamicsl 16

I3.3 Fitness functior] 17

|4 Optimisation Toolé 18

|4. 1 BehaviorSearcH 18

|4.2 Learning-to-learn (L2L)| 20

|4.3 Comparisod 22

|5 Search Configurations 24

H.1 Hyperparameter preﬁlteringJ 24

I:'J.2 Main investigatiod 25

b.3 Static and dynamic worldl 25

b.4 Varying network topologyl 26

b Results and Evaluation 27

6.1 Hyperparameter preﬁlteringj 27

b.2 Main investigatiod 28

b.2.1 BehaviorSearcH 28

CONTENTS 3
6.2.2 L2} 34

b.2.3 Comparisonl 36

b.3 Static and dynamic Worldl 38
b.4 Varying network topologyl 39

I? Network Analysis 40
7.1 2 hidden-layer neurons] 40

|7.2 6 hidden-layer neuron&l 42
|7.3 1 hidden-layer neurod 44
|7.4 0 hidden-layer neuronsl 46

8 Multi-Ant Model 47
b Conclusion 49
0.1 Summaryl 49
.............................. 50

51
58

1 INTRODUCTION 4

1 Introduction

Artificial neural networks (ANNs) are machine learning algorithms based on
the architecture and computations of the human nervous system [l]. As
ANNs have become more widespread, their computational power has also
continued to evolve. Spiking neural networks (SNNs) represent the third
generation of neural networks [2] and, in addition to previous generations,
offer the ability to reproduce spatio-temporal dynamics [3]. By using spiking
neurons as main computational units, SNNs are considered to be more bio-
logically realistic, since information is transmitted through action potentials
or spikes. This makes them particularly attractive for modelling biological
systems, including the simulation of biological organisation.

Spiking neurons can be modelled using various abstractions [4]. The
Leaky Integrate-and-Fire (LI&F) model [5] is widely used among neurosci-
entists to analyse the behaviour of SNNs [6, 7, 8]. It reproduces the basic
properties of a biological nerve cell using the following mechanism: when
input currents cause an increase in the membrane potential until a certain
threshold is reached (otherwise it decays towards the resting potential), a
spike is initiated (firing event). Immediately afterwards, the neuron enters
an absolute refractory state in which all incoming pulses are neglected. Once
the refractory period has elapsed, the neuron is open to incoming pulses

again. An illustration of this process is shown in Figure EI

6

Potential (arbitrary units)

Figure 1: Membrane potential of a Leaky Integrate-and-Fire neuron [9]

1 INTRODUCTION 5

As with many neural models, the difficulty in achieving the desired perfor-
mance is finding the appropriate parameter settings, e.g. synaptic character-
istics such as weight and learning rate, etc. Typically, these models contain
a large set of parameters, each with its own data type and admissible range.
This results in a huge search space, which makes the identification of value
assignments that lead to acceptable solutions a very time-consuming task.
In order to locate adequate settings more efficiently, many autonomous ap-
proaches use heuristic search methods for parameter optimisation. Among
them, genetic algorithms (GAs) provide evolution-based search techniques
inspired by the processes of natural adaptation [10]. As with the model to
be optimised, the challenge is to choose the appropriate hyperparameter set-
tings. If another autonomous approach were to be applied at this point, it
would ultimately lead to an endless chain of parameter optimisations. For
this reason, the main purpose of this study is to (manually) investigate the
settings of GA hyperparameters that lead to satisfactory performance of the

considered model.

1.1 Motivation

Computational neuroscience is concerned with understanding the principles
and procedures of neural systems through the study of biologically realistic
mathematical models [11]. In nature, organisation is found at different lev-
els and complexity, from molecular structures to populations of organisms.
Among these, insect colonies exhibit a complex adaptive self-organising pat-
tern [12]. Division of labour, coordination of activities, temporally synchro-
nised behaviour and the ability to distribute information processing make
these creatures particularly interesting for computational neuroscientists.
SNNs are not only biologically more realistic computational systems, but
most importantly offer the capability to reproduce the occurrence of tempo-
ral coupling in insect societies [13]. This makes them particularly suitable
for simulating and studying those creatures.

As the complexity of behavioural traits in insect colonies increases, so

does the complexity of neural models used for simulating their behaviour.

1 INTRODUCTION 6

Consequently, it becomes not only more difficult to achieve a realistic sim-
ulation, but also to understand and explain the observed behaviour based
on the model. For this reason, reducing the complexity and limiting it to
the most basic behavioural properties provides the opportunity to study the
model in more detail.

In order to obtain a simulation that reproduce biologically realistic be-
haviour, the use of parameter optimisation methods is often required. Ge-
netic algorithms present meta-heuristic search techniques, which use a prede-
fined fitness function for the evaluation of solution candidates. As evolution-
inspired algorithms, GAs provide many benefits [14], some of which are listed

below:

consider multiple solutions in each cycle (population-based search)

o easily parallelized (evaluation distributed over several processors)

« maintain diversity in population (stochastic operators e.g. mutation)
« ability to escape from local optima

o support multi-objective optimisation

» compatible with mixed type encodings

e easy to implement, various variants

Genetic algorithms generally contain a set of hyperparameters that in-
fluence the progress of the search. In particular, these parameters affect the
convergence speed and the best fitness achieved during the search process.
The latter directly corresponds to how well a solution solves the considered
problem. Taking into account the limited available resources, there is the
necessity to identify hyperparameters that lead to the best possible perfor-

mance of the applied GA, which forms the main motivation for this work.

1.2 Overview

This section provides an introduction to the topic and a general overview of
the content covered in this thesis. A multi-agent simulation model embedded

in NetLogo [15] is examined. It simulates an insect, more specifically an

6

1 INTRODUCTION 7

ant, moving through a virtual world with many obstacles in search of food.
During this process, the ant is controlled by a spiking neural network whose
parameters (weights and delays) are optimised using genetic algorithms. For
this purpose, two optimisation tools (L2L [16] and BehaviorSearch [17]) are
applied and compared with each other.

As part of this investigation, a series of optimisation searches were per-
formed. A more detailed description of the search configurations can be found
in Chapter H First, several short search runs were conducted to become fa-
miliar with the parameters of genetic algorithms and to limit the settings
to promising ones. Subsequently, these parameter values were examined
in more detail through longer searches carried out on a high performance
computer (HPC). Chapter B is primarily concerned with evaluating the data
obtained through the search runs in terms of achieved fitness and parameters
of the applied GAs to determine which settings deliver the best results. Af-
terwards, an analysis of the optimised networks is presented. In particular,
SNNs with variable topologies are considered to understand and explain the
behaviour of the insect during the simulation. In the end, a modified version
of the considered model is examined, which simulates multiple ants that try
to avoid collisions between each other, while maintaining their behavioural
characteristics. It is particularly interesting here to observe whether the ants

can also cope in a world with other moving agents.

1.3 Related work

Even though the application of spiking neural networks for controlling au-
tonomous robots [18, [19, 20] has proven to be very successful, there is not
much research done regarding the simulation of insect colonies using SNNs.
Chevallier et al. proposed a model called SpikeAnts [21], in which an ant
colony is controlled by a sparsely connected SNN. Each ant makes its own
decision of action (foraging, sleeping, self-grooming) through two different
spiking neurons, a Leaky and a Quadratic Integrate-and-Fire neuron. An-
other study is presented by Ahmadi et al. [22] in which a framework that

models an artificial creature and a colony of creatures is considered. The

1 INTRODUCTION 8

creatures are controlled by an SNN and placed in a virtual environment with
randomly positioned food. Main differences compared to the model exam-
ined in this study are found in the network architecture (a single creature
is modelled with 108 neurons), varying strength of visual stimulation (de-
pending on the distance of the food) and the addition of an energy level that
decreases with each action and increases when food is found. The aim of this
research was to achieve a high survival chance (energy level over zero) of the
creatures through a genetic algorithm optimisation.

Several studies use spike timing dependent plasticity (STDP) [23, 24, 25]
and reinforcement learning [26, 27] to train spiking neural networks. While
these methods reflect synaptic plasticity, there are several other techniques
to obtain a functional network. Meta-heuristic search is a common method
to optimise large sets of parameters in an autonomous way. Genetic algo-
rithms applied to spiking neural networks have gained popularity as this
combination has proven successful in practice [28, 29, B0]. Although there
have been many applications of genetic algorithms in various fields like eco-
nomics [31, B2], medicine [33, B4, B5] and social science [36, B7] etc., not many
work can be found that focuses on the optimisation of hyperparameters. In
fact, most GA optimisation approaches only use fixed hyperparameter set-
tings. Usually, they are either manually chosen [38, B9, 40, 41] or based on
literature suggestions [42, 43]. Only rarely is an examination of the hyperpa-
rameters carried out in order to improve the results of the genetic algorithm
and therefore the model to be optimised. Some research has been done on
the general study of genetic algorithm parameters. In the work of Hassanat
et al. [44], the crossover and mutation probabilities were investigated by
dynamically increasing and decreasing the ratios. Experimental results show
that one of the most commonly chosen setting did not perform well in any
of the trials. Another study was conducted by Sipper et al. [45] in which
25 different problems were investigated thoroughly regarding parameter as-
signments of GAs. Likewise, this research concluded with the fact that no
common settings could be extracted that would deliver general solid perfor-
mance. This emphasises the importance of case-specific optimisation of GA

hyperparameters.

1

INTRODUCTION 9

1.4 Outline

Chapter 2 provides an introduction to genetic algorithms. It gives a
brief summary of evolutionary concepts, followed by a more detailed

explanation of the algorithmic structure and settings of GAs.

Chapter E describes the simulation model embedded in NetLogo. This
includes the construction of the insect environment as well as the ar-
chitecture and neural dynamics of the implemented spiking neural net-

work.

Chapter @ gives an overview of the utilised optimisation tools L2L and
BehaviorSearch. In particular, the respective realisation of the genetic
algorithm as preparation for subsequent search analysis is explained

and compared.

Chapter H reports which search experiments were performed with a
description of the parameter and search settings, and clarifies some

underlying thoughts during the procedure.

Chapter B evaluates the search results. The parameter settings of the
two algorithms are investigated and compared with respect to the best

fitness achieved and the development over the generations.

Chapter B deals with the optimised networks in more detail. It pro-
vides an analysis of the internal dynamics and computations regarding

the agent’s behaviour.

Chapter E presents a modified version of the model which simulates
multiple insects. The performance and achieved fitness as well as the

architecture of the network are examined and discussed.

Chapter E provides a summary of the work and suggestions for future

research.

2 GENETIC ALGORITHMS 10

2 (Genetic Algorithms

Genetic algorithms (GAs) are meta-heuristic search methods that belong
to the class of evolutionary algorithms. As an abstraction of evolutionary
processes based on Charles Darwin’s original theory on natural selection
[46], GAs apply evolutionary operators (selection, recombination, mutation)

to solve optimisation problems.

2.1 Evolution-inspired algorithms

Biological evolution describes the development of organisms at the level of
populations through the mechanism ”survival of the fittest”. As stated by
Sivanandam and Deepa [47] as well as Kramer [48], the evolutionary process
takes place encoded in the genetic information of living beings. In particular,
it involves operations on chromosomes and how this information decoded
affects the survival chance of its carrier.

In nature, selection defines the mechanism that organisms with a bet-
ter adaptability to their environment have a better chance of survival and
therefore reproduce more frequently. As a result, chromosomes with advan-
tageous expressions are passed on to subsequent generations more often than
disadvantageous ones. Evolution mainly takes place during the reproduc-
tive phase of living beings. Several mechanisms contribute to this process.
Among them, recombination and mutation are the most common. The for-
mer involves the combination of parental chromosomes to produce the genetic
information of the next generation, i.e. the children or offspring. Mutation,
on the other hand, describes the random alteration of chromosome segments
resulting in new encoded information within a population. Together, these
three operations - selection, recombination and mutation - form the basis of

the class of evolutionary algorithms.

2.2 A genetic algorithm cycle

Among evolutionary algorithms, GAs form the most widely applied technique

in practice. The concept of genetic algorithms was first introduced by Holland

10

2 GENETIC ALGORITHMS 11

Evolutionary
operators
Start Fitness determination

Initial population Evaluation I Selection Stog:hastllc sg[echon of
fittest individuals

A

\ 4

Stochastic combination of

No el e fittest individuals

\ 4

Generations / Yes . . Stochastic alteration of
?
best fitness VAT AREET resulting individuals

End Termination criterion

Figure 2: Typical cycle of genetic algorithms

[19] in 1975 and further elaborated by Goldberg [50].

A genetic algorithm is an iterative and stochastic search method that op-
erates on a population of individuals. Each individual represents a candidate
solution to the given optimisation problem. Since each solution is encoded in
an individual, it is often simply referred to as a chromosome. Figure E shows
the cyclic process of genetic algorithms along with the applied evolutionary
operators. The algorithm starts with a randomly initialised population of
individuals. Each of them is evaluated in the first step of the iterative pro-
cess based on a predefined fitness function. This function determines how
well an individual solves the given problem. Therefore, the construction of
a suitable fitness function is often the most challenging task when imple-
menting GAs [51, p2]. After the evaluation, the evolutionary operators are
applied to the population. Depending on the implementation, each operator
can be realised in different ways. Selection involves stochastically choosing
the fittest individuals to pass on to the next population. Common variants
[p3] include roulette selection, tournament selection and rank selection. Af-
terwards, the best chromosomes are combined or cloned to produce offspring

which are added to the subsequent population. This process is referred to as

11

2 GENETIC ALGORITHMS 12

crossover, which can be realised through single-point crossover, multi-point
crossover, uniform crossover and blend crossover etc. [b4, 55, b6] Mutation
is then performed, often with a certain probability, on the entire population
of resulting individuals. Depending on how the solutions are encoded in the
chromosomes, different options [57] such as bit-flip mutation or uniform mu-
tation can be used. After applying the evolutionary operators, the resulting
population forms the new generation on which the GA operates in the next
cycle. Before the algorithm enters the next iteration, the termination crite-
rion is checked. Usually, the number of produced generations or a certain
fitness score to be achieved is chosen for this purpose. Results of interest from
genetic algorithms are primarily the best fitness achieved and the generated

solutions over the course of generations.

2.3 Hyperparameters

In nature, the progression of evolution varies between organisms. Some
species evolve very slowly, while others go through a much faster evolutionary
process. On the one hand, the difference in reproduction rate contributes to
this observation. On the other hand, evolution is a strongly stochastic pro-
cess, i.e. how and when selection, recombination and mutation take place is
completely random.

Genetic algorithms model the stochasticity through a set of control pa-
rameters. Generally, this involves setting the number of individuals con-
tained in each population and the probabilities with which each operation
is executed. Depending on the implementation, the hyperparameters may
vary between GAs. In this study, the genetic algorithms of two different
optimisation tools are applied to a parameter optimisation problem, which
is explained in the next chapter. The algorithms are compared in terms of
performance, i.e. achieved fitness and speed of convergence with respect to
the hyperparameter settings. A more detailed description of the hyperpa-

rameters and implemented genetic algorithms can be found in Chapter @

12

3 MODEL 13

3 Model

A modified version of the model proposed by Jimenez-Romero et al. [§] is
examined in this study. It simulates an artificial ant navigating through a
virtual world full of food and obstacles (c.f. Section El]) In this model, the
ant receives external visual stimuli from objects placed at a fixed position
in the world, as well as reward or punishment sensation when it comes into
contact with these objects. The insect is controlled by a spiking neural
network, whose synaptic parameters are optimised using genetic algorithms
(see Chapter @) The model including the SNN is implemented in NetLogo
[15]. NetLogo is a programming environment specialised in the simulation
of multi-agent models. It offers the possibility to explore the behaviour of
agents through instructive commands during the simulation.

In the following sections, the virtual world in which the insect is located
is introduced, followed by a detailed explanation of the implemented spiking

neural network.

3.1 Virtual insect environment

NetLogo offers several types of agents, including turtle, patch and link agents,
which can be used for the simulation. In this model, the insect agent as well
as the spiking neurons are modelled as turtle agents which are able to move
around in the world. Each patch represents a fixed position in the NetLogo
virtual environment. Patches can be programmed with own characteristics
and are able to interact with other agents. Link agents are used to model
the synaptic connections between the neurons in the SNN.

A detail of the NetLogo interface visualising the insect environment is
shown in Figure B In the beginning of each simulation, the yellow insect is
located in the middle of the virtual world. White patches form a boundary
around the world and additional vertical walls are drawn throughout the
area creating a maze like environment. In addition, about 200 of each red
and green patches are distributed all over the world. Red patches represent

harming objects, while green patches symbolise food or rewards.

13

3 MODEL 14

--*I- I

Figure 3: A yellow insect is located in a virtual maze simulated in NetLogo

In the ideal case, the ant should behave in such a way that it moves around
in the maze while collecting as many food as possible without colliding with

obstacles.

3.2 Spiking neural network

The spiking neural network implemented in this simulation is based on sim-
plified version of a Leaky Integrate-and-Fire (I&F) model [p]. In the following
sections, the architecture of the SNN is explained followed by a summary of
the internal neural dynamics. A more detailed description of the utilised

SpikingLab framework can be found in Jimenez-Romero et al. [59].

3.2.1 Architecture

A screenshot of the modelled SNN captured from the NetLogo interface is
shown in Figure @ The network consists of three layers, with the first layer
responsible for handling external stimuli through sensors and afferent neu-
rons, which propagate the input pulses to the next layer. The artificial insect
is able to process three types of sensory information. Visual perception is re-

alised via three photoreceptors, each of which is sensitive to a specific colour

14

3 MODEL 15

Figure 4: Spiking neural network simulated in NetLogo

(white, red and green). In addition, the network has two receptors which
allows the insect to perceive pain and rewarding sensation. To enable the
ant to continue moving even in the absence of external stimulation, an arti-
ficial heartbeat is modelled by two interconnected neurons (labelled 16 and
17). This heartbeat is started at the beginning of each simulation through a
pulse initiated by an external input current (i.e. voltage clamp). Neurons in
the middle layer carry out the main computations. By default, six intercon-
nected neurons form this layer. Experiments with fewer and more neurons
are examined and discussed in more detail in Chapter H The decision about
which action the ant will perform at each step is made by two motoneurons
or actuators. The insect is able to execute two types of actions, rotation and
forward movement. If the spiking neuron labelled 30 is firing, the ant rotates
4 degrees to the right. On the other hand, if the motoneuron with label 31
fires, the insect moves 0.4 steps forward.

Since each neuron in this network is connected to every neuron in the
following layer along with the interconnected neurons in the middle, the
number of connections adds up to 78 synapses for six second-layer neurons.
Each synapse has a weight and a delay value, resulting in a total of 156
parameters to be optimised. For the weight parameters a range of -20 to 20
is chosen and for the delays every integer value between 1 and 7 is a valid

setting.

15

3 MODEL 16

3.2.2 Neural dynamics

The virtual insect can perceive its environment up to a certain distance (see
Table B) When a photoreceptor senses the corresponding colour in front of
the ant, it starts sending pulses to the afferent input neuron. An example
is shown in Figure B In graph a), the membrane potential of the neuron
sensitive to the colour green is illustrated. In this moment, the ant has its
focus on a green patch, and the colour sensor causes the connected neuron
to fire. As it approaches the food, the neuron continues to fire until the ant
reaches and collects the food. At this point, the green neuron stops firing and
diagram b) shows that the reward receptor has sensed the food and triggers

its afferent neuron to fire once.

a) Membrane Potential of Green Neuron
=50
>
-80
0 Time 100
b) Membrane Potential of Reward Neuron
-50
> /
-80
0 Time 100

Figure 5: Membrane potential of selected input neurons

a) shows the membrane potential of the neuron processing green colour
stimulation when the corresponding patch is sensed.
b) shows the membrane potential of the neuron processing rewarding sensation

when the ant collects food.

16

3 MODEL 17

As mentioned above, the SNN is realised according to the basic princi-
ples of an LI&F model. Each spiking neuron receives signals exclusively from
presynaptic neurons, i.e. no external stimuli influence the membrane poten-
tial. A modelled spiking neuron has the following characteristics: membrane
potential, resting potential, firing threshold, decay rate, refractory potential
and duration as well as spikes sent per stimulus. The exact settings can be
found in Table B During the simulation and the optimisation, these settings
remain unchanged. In [p9] a state-transition machine of the simulated spik-

ing neurons and an illustrative presentation of the membrane potential can

be found.

3.3 Fitness function

As stated in Section @, the definition of a suitable fitness or objective func-
tion is crucial to guide the genetic algorithm into the right direction. Since
each candidate solution is evaluated based on the fitness value, this func-
tion must encode the desired behaviour of the ant in the simulation. The
difficulty is to find a good balance of included constraints without construct-
ing an overly complex fitness function. In this model, the ant should move
through the world collecting food while avoiding the obstacles. The formula
for calculating the fitness of an individual I is shown in (@) For each reward
found by the ant, the fitness is increased by 1. If the ant hits an obstacle,

i.e. a wall or a harmful object, the fitness is reduced by 1.5.

fitness(I) =1-n__found__food — 1.5 -n__collisions (1)

Hence, the goal is to maximize the fitness of the insect. Here, the penalty
for a collision is set slightly higher than the reward for collecting food. It
is worth mentioning that these values were determined through experiments
and tests in the simulation. If the penalty is set too high, the ant would
stop moving as soon as it perceives an obstacle. On the other hand, the ant

should prefer avoiding a collision to collecting food.

17

4 OPTIMISATION TOOLS 18

4 Optimisation Tools

In this study, the genetic algorithms of two optimisation tools are applied
and compared. In particular, the hyperparameters are examined with regard
to the achieved fitness and speed of convergence. In order to analyse and
compare the software tools more adequately, the following sections introduce

the parameters and describe the implemented algorithms in more detail.

4.1 BehaviorSearch

BehaviorSearch [17] is a software tool specialised in the automated optimi-
sation of agent-based models. It interfaces with NetLogo models and offers
several meta-heuristic search techniques including genetic algorithms. Five

parameters of the GA can be set, which are listed below:

o population-size defines how many individuals form a population. Each

generation consists of exactly that many individuals.

o tournament-size determines the size of the group of individuals consid-
ered during a selection iteration. In each round, the fittest individual from

this group is chosen to be included in the next population.

» crossover-rate specifies the number of parental chromosomes selected
during the recombination phase and thus how many children are included

in the next population.

« mutation-rate indicates the probability with which each parameter value

of an individual is changed.

o population-model determines how the next population is composed. In
this case, the parameter is set to "generational”, which means that the

current population will be completely replaced at once by the new one.

A description of the implemented algorithm along with the applied pa-
rameters is shown in Algorithm m As with typical GAs, the algorithm starts
by creating the initial population and evaluates the fitness of each individual

(lines 1-4). In the main cycle, the number of crossover pairs is calculated

18

4 OPTIMISATION TOOLS 19

Algorithm 1: Genetic algorithm of BehaviorSearch

Input: GA parameters
Output: best fitness, generations of individuals
1 for i = 1 to population-size do
2 | cur_pop < add(create_chromosome());
3 end
4 fitness < compute__fitness(cur_pop);
5 while search_unfinished() do
6 crossover__pairs < (crossover-rate - population-size) + 2;
7
8
9

for i = 1 to crossover-pairs do
parent__1 < select(cur__pop, fitness, tournament-size);
parent_ 2 < select(cur__pop, fitness, tournament-size);
10 new__pop < add(mate(parent_1, parent_2));
11 end
12 for i = crossover-pairs + 1 to population-size do
13 ‘ new__pop < add(select(cur__pop, fitness, tournament-size));
14 end
15 for i = 1 to population-size do
16 ‘ new__pop < mutate(new__pop, mutation-rate);
17 end
18 cur_pop = new__pop;
19 fitness = compute__fitness(cur__pop);
20 end

based on the set crossover-rate (line 6). Afterwards, the new population is
filled with offspring which result from mating the parents that are chosen
through tournament-selection (lines 7-11). During this recombination pro-
cess, the chromosomes are combined via single-point crossover (see Figure E)
Recombination in this form involves the random selection of a crossover point
within the parent chromosomes. The two separate parts are then swapped
to create new chromosome strands that form the children. Tournament se-
lection is applied again to fill the new population with individuals from the
current population until the population-size is reached (lines 12-14). Before
the new population is evaluated again and the next cycle is entered, muta-
tion is applied to each value of each individual according to the mutation-rate
(lines 15-17).

19

4 OPTIMISATION TOOLS 20

random
crossover point

Parent 1 Child 1

-

Parent 2 Child 2

Figure 6: Single-point crossover (modified from [60])

4.2 Learning-to-learn (L2L)

Learning to learn (L2L) [16] is an optimisation framework that provides sev-
eral gradient-free optimisation algorithms, including GAs. The algorithm
along with the applied operators are executed using the DEAP framework
[61], which specialises in evolutionary operations and computations. A de-

scription of the GA parameters can be found below:

o pop__size defines the number of individuals in each population.

e tourn__size determines how many individuals are considered during each

selection round. The fittest individual is included in the next population.

e cx_ prob indicates with which probability two individuals are combined

to create new offspring.
« mate_ par is the exploration factor used in blend crossover (Figure B)

« mut_ prob describes the probability with which a chromosome is mu-

tated or, more precisely, enters the mutation phase.

o ind_ prob indicates the probability with which a parameter of an indi-

vidual (of a possible solution) is mutated.

« mut__par specifies the standard deviation of the Gaussian distribution

considered during the mutation phase.

e n_ iteration determines the number of generations created before the

algorithm terminates.

20

4 OPTIMISATION TOOLS 21

Algorithm 2: Genetic algorithm of L2L

Input: GA parameters

Output: best fitness, generations of individuals
1 for i = 1 to pop_size do

2 | cur_pop < add(create_chromosome());

3 end

4 fitness < compute__fitness(cur_pop);

5 for 1 = 1 to n__iteration do

6 for j = 1 to pop_size do

7 ‘ new__pop <— add(select(cur__pop, fitness, tourn__size));
8 end

9 for j = 1 to pop size by 2 do

10 if random() < cx_prob then

11 new__pop <

add(mate(new__popl[j|, new__pop|j + 1], mate_par));

12 end

13 end

14 for j = 1 to pop_size do

15 if random() < mut_prob then

16 ‘ new__pop|j| < mutate(new__poplj|,ind_prob, mut_ par);
17 end

18 end

19 cur__pop <— new__pop;

20 fitness < compute__fitness(cur__pop);
21 end

As with BehaviorSearch, the genetic algorithm in L2L begins with the
creation of the initial population in which random candidate solutions are
generated. Each individual is then evaluated in the simulation to determine
its fitness. In the first step of the main cycle, the new population is filled
with individuals from the current population via tournament selection (lines
6-8). In lines 9-13, this group of individuals is then iterated through and
with a probability of c¢x_prob two individuals are paired up to produce new
offspring. In this algorithm, recombination is realised using blend crossover,
which is shown in Figure H With this type of recombination, the corre-
sponding parameter values x and y of the parental chromosomes are taken

to create a range (exploitation). A factor o (mate_par in case of L2L) is

21

4 OPTIMISATION TOOLS 22

Figure 7: Blend crossover (modified from [62])

applied to this range in order to expand it (exploration). A random value is
then selected out of this area for each of the two children. This procedure
is repeated until complete chromosome strands are generated. Afterwards,
uniform mutation is applied through the Gaussian distribution according to
parameters mut_ prob, ind_prob and mut_ par (lines 15-18). This cycle is
repeated until a certain number of generations, indicated by n__iteration, has

been generated.

4.3 Comparison

In order to make an accurate comparison between both algorithms, it is
necessary to point out the similarities and differences in the realisation of
the GAs. First of all, both genetic algorithms have a very similar structure.
In both cases, the proposed solutions are encoded directly according to the
assigned values. An important difference concerns the step-size of the weight
parameters. While L2L uses the full range, i.e. every real number is a possible
assignment, the parameter range in BehaviorSearch is limited to a step-size
of 0.2. The intention behind setting this restriction is further elaborated in
Section @ During the evolutionary operations, tournament selection is used
in both implementations to choose the parent individuals as well as to fill
in the new population with existing individuals. The main difference occurs
in the application of recombination. While BehaviorSearch use single-point
crossover, the genetic algorithm implemented in L2L applies blend crossover.

As mentioned earlier, L2 has a larger set of hyperparameters. For a

more reasonable comparison of both algorithms in terms of performance,

22

4 OPTIMISATION TOOLS 23

the parameter settings should be chosen as similar as possible. Table m
presents a comparison between the hyperparameters and clarifies which ones
correspond to each other. Both hyperparameter sets include parameters to
define the size of a population as well as the number of individuals considered
in each tournament round. In both cases, crossover is performed with a
certain probability. Therefore, parameters cx_prob and crossover-rate can
be treated in the same way. As previously mentioned, blend crossover extends
the considered area by a factor a. In L2L, this is defined by the additional
parameter mate par. Since the realisation of recombination varies between
the algorithms, this parameter needs to be considered separately. During
the mutation phase, L2L considers three parameters. mut_ prob defines with
which probability an individual is mutated or, more precisely, enters the
mutation phase. In the case of BehaviorSearch, every individual goes through
mutation. To achieve maximal similarity, in this study, mut_ prob is therefore
set to 1.0. ind_prob is the parameter that corresponds to mutation-rate in
BehaviourSearch as both indicate the probability with which a value encoded
in an individual is altered. Thus, these parameters can be treated equally.
Lastly, mut_ par defines the standard deviation of the Gaussian distribution
considered during mutation. As in BehaviorSearch this value is set fixed to

0.1, the same number is chosen in the case of L2L.

Category BehaviorSearch L2L
Population population-size | pop_ size
Selection tournament-size | tourn size
Recombination crossover-rate cx_ prob
mate_ par
mut_ prob
Mutation mutation-rate ind_prob
mut_ par

Table 1: GA parameter comparison of BehaviorSearch and L2L

23

5 SEARCH CONFIGURATIONS 24

5 Search Configurations

A set of search results is required in order to analyse the hyperparameters
of the genetic algorithms. As a complete search of all possible settings is
both time- and resource-consuming, a more efficient search approach is per-
formed to extract and investigate well-functioning parameter settings. In the
following sections, the search procedure and configurations as well as some

underlying considerations are explained.

5.1 Hyperparameter prefiltering

Before conducting longer optimization runs, it is important to get familiar
with the effects of the hyerparameters first. In order to be able to perform a
broader but still efficient search, the runs during this stage were kept shorter.
For this purpose, the genetic algorithm of BehaviorSearch is used for two
main reasons. On the one hand, BehaviorSearch applies a "classical GA”,
which mainly means that the hyperparameters are limited to most essential
ones. While this makes the exploration easier to follow, it also allows for
a better understanding of how the parameters influence the search progress.
On the other hand, since the search space is more restricted due to the defined
step-size, the search process and the results will be more stable with different
hyperparameter settings.

As listed in Section El!, the GA of BehaviorSearch has five adjustable pa-
rameters, four of which are of greater interest: population-size, tournament-
size, crossover-rate and mutation-rate. First, the crossover-rate and the
mutation-rate are examined through a short grid search. Then the best values
are selected to examine the population-size in relation to the tournament-size.
Each search runs for 1000 evaluation iterations (number of fitness determi-
nation) and for each setting 10 different seeds are tested. In case of the
grid search, values from 0.0 to 1.0 with a step-size of 0.1 were tested with
the population-size set to 32 and the tournament-size set to 3. In the first
trial, the mutation-rate is explored with a fixed crossover-rate of 0.7. The

following searches are ran with the best performing setting from previous

24

5 SEARCH CONFIGURATIONS 25

trials. It should be mentioned here that a full grid search would require
a lot of resources, even if the searches are kept short. In this phase, the
goal is not to identify the best performing configuration, but rather a well-
performing range for each parameter. A further investigation of these ranges
is then carried out through longer search runs. Hence, for this purpose, only
a partial grid search is performed to extract the promising ranges. For the
second group of parameters, the goal is to find a well-functioning ratio be-
tween population-size and tournament-size. The complete search results can

be found in the Appendices and will be evaluated in Section El]

5.2 Main investigation

The main purpose of this study is to compare the two genetic algorithms in
terms of the best fitness achieved and the parameter settings that lead to
these fitness scores. In the previous phase, the well-performing ranges of the
hyperparameters were extracted. This part focuses on a deeper investigation
through longer search runs performed on a cluster. At this point, it should
be mentioned that the search executions vary between the two optimisation
tools due to the differences in duration of the searches. With BehaviorSearch
much longer runs were possible within an acceptable amount of time. Hence,
for each search, the number of fitness evaluations was set to 60000 iterations
and each setting was tested with 3 different seeds. On the other hand, the
algorithm offered by L2L could achieve 100 generations within approximately
the same time. In addition, due to the more variant search results with
L2L, a more broader (regarding the ranges) and thorougher investigation (4
different seeds) was performed with the crossover and mutation parameters,
while reducing the investigation on the population size and tournament size.

An evalutation of the search results can be found in Section @

5.3 Static and dynamic world

With training any computational model, there is always the risk of over-

fitting [63]. During the long search runs, the simulation model considered

25

5 SEARCH CONFIGURATIONS 26

while evaluating the fitness of a solution was always kept the same. To be
more precise, every object in the insect environment was placed at the exact
same position for each simulation. On the one hand, a fixed world leads to
a more stable search, which would make the analysis of the fitness develop-
ment more comprehensive. On the other hand, an individual could achieve a
high fitness value by over-fitting to the world, especially with more complex
networks that allow more memory capacity. Hence, to prevent over-fitting,
search experiments with variant world setting in each fitness evaluation were
performed. With the aim to further counteract over-fitting, experiments were
conducted with reduced simulation lengths, i.e. less simulation iterations
(ticks). The underlying intention is to achieve a better performance of the
ant faster. Individuals with a high fitness score would imply that the insect
can find food more quickly, i.e. find more in fewer simulation time. For this
investigation, three different simulation lengths were tested, that is, 20000
(standard length), 10000 and 5000 ticks. A total of 8 search settings with
a fixed and a non-fixed world were applied for each length. Among these, 4
settings were selected from previous searches that resulted in high fitness val-
ues and the other 4 were performed with settings that yielded comparatively

low fitness values.

5.4 Varying network topology

All searches described in the previous sections were performed with an SNN
containing six neurons in the middle layer. However, it is educational to know
how a network with fewer or more neurons would influence the behaviour
of the insect. In particular, it would be informative to observe whether
the insect can achieve the same behaviour with fewer than six neurons and
whether it can perform even better with more neurons, for example, find food
faster or more efficiently. For this purpose, tests were carried out with 0 to
14 second layer neurons. More than 14 neurons were not a practicable in the
NetLogo simulation due to the overhead caused by the increasing number
of parameters. It should be added here that in the case of the network

with 0 neurons, i.e. without a middle layer, the input neurons are directly

26

6 RESULTS AND EVALUATION 27

connected to the actuators. In order to enable these motoneurons to influence
each other, two synapses were added between them. A total of 8 searches
were performed for each number of neurons, 4 with fixed world settings and
another 4 with variant world to exclude the risk of over-fitting as described

in the previous chapter.

6 Results and Evaluation

In this chapter, the results of the searches are evaluated and discussed. Fol-
lowing the procedure of the search runs described in Chapter H, the data
obtained from the short runs are first examined and then a more detailed in-
vestigation of the longer runs is presented. In particular, it involves the best

fitness achieved and the parameter settings that contribute to this outcome.

6.1 Hyperparameter prefiltering

During the short search runs, three trials were performed for each crossover
and mutation rate. For each trial, the best value from the previous trials was
chosen for the corresponding fixed parameter. Mutation rates of 0.2, 0.4 and
0.5 were set for the exploration of the crossover rate and correspondingly
0.6, 0.7 and 0.8 were assigned to crossover rate for the exploration of the
mutation rate. The search results can be found in Figures @ - @ For each
setting, the average, median and standard deviation were calculated from the
10 different initial populations. The best performing settings are marked for
each trial. For each trial, the settings with the best performance are marked.
Best performance here means not only an overall high fitness, but also a
stable fitness, as the setting should not only work well with certain initial
populations. Therefore, a high mean and median as well as a low standard
deviation is preferred.

From these experiments it can be concluded that overall lower values
for the mutation rate and higher probabilities for crossover lead to good
results. Specifically, a range of 0.2 to 0.5 for mutation rate and 0.6 to 0.8

for crossover rate can be derived, which will be further investigated in the

27

6 RESULTS AND EVALUATION 28

following section. Regarding population-size and tournament-size, the goal is
to find a well-functioning ratio between them. For this purpose, population
sizes of 16, 32, 48, 64 and 80 were tested in relation to tournament sizes of 3,
4 and 5. Figures @ - @ contain the corresponding search results. Overall,
a ratio of 0.06 to 0.1 between tournament size and population size leads to
the best results.

6.2 Main investigation

With the long search runs, the optimisation tools are first examined one after
the other and then a comparison is made with regard to the hyperparameter

settings and the achieved fitness.

6.2.1 BehaviorSearch

From the short searches, well-functioning ranges for crossover rate (0.6 to 0.8)
and mutation rate (0.2 to 0.5) have been determined. In terms of population
size and tournament size, 0.06 to 0.1 has proven to be a good ratio. Since the
longer searches are performed on a cluster, it offers the opportunity to use
larger populations. With additional experiments and the results from the
short searches, the combinations 64-5, 80-6, 96-7 (population size to tourna-
ment size) were chosen to investigate crossover and mutation probabilities.
Note that all of these pairs have a ratio of 0.07 to 0.08, which is within the
range found.

In order to compare the results with the experiments conducted with L2L,
a search duration of 100 generations performed by the GA of BehaviorSearch
is first examined. Figure E shows the highest fitness achieved during the 100
generations in terms of crossover and mutation rate. The corresponding
generation in which the best fitness first appeared is presented in Figure Q
Both the fitness values and the corresponding generation number represent
the average of three different search runs for each setting. At first sight, it
can be seen that with increasing population size, there is also an increase in
the fitness score. More specifically, a population size of 64 individuals mostly

achieves fitness values of 30 to 50, 80 individuals can reach a fitness of 40

28

6 RESULTS AND EVALUATION 29

to 55 and a group of 96 candidate solutions obtained a score of about 50 to
60. With regard to the crossover and mutation rate, it can be seen that for
all tested population sizes, low values of both parameters lead to overall low
fitness scores. For 64 and 80 individuals, higher fitness could be achieved with
a high crossover rate and low mutation rate. However, with a population size
of 96 individuals, the highest fitness values are obtained with larger values
for both parameters. From the diagrams in Figure H it can be inferred that
for larger populations, a higher number of generations is required to reach
the highest fitness within 100 generations. Thus, 100 generations are not
enough to make the searches converge, especially for larger populations.
Nevertheless, a first investigation is conducted on the peak points of the
fitness scores. Table E shows the four highest fitness values for each pop-
ulation size along with the corresponding crossover and mutation rate and
generation in which score has been achieved. It can be observed that the
combination of 0.7 for the crossover rate and 0.2 for the mutation rate leads
to peak values for all three population sizes. Furthermore, the following
pairs 0.8 - 0.2, 0.8 - 0.3, 0.6 - 0.3 (crossover - mutation) occur twice in the
three diagrams. In average, the generations in which the peak points first
occur are overall after approximately 80 cycles. As previously mentioned,
this indicates that there is still room for improvement when when running
64-5 80-6 96 -7

60

9 45

& 40

35

Figure 8: Best fitness achieved in 100 generations

Diagrams labelled with population-size - tournament-size

29

6 RESULTS AND EVALUATION 30

64-5 80-6 96 -7

Figure 9: Generation in which best fitness first achieved in 100 generations

Diagrams labelled with population-size - tournament-size

pop-size 64 80 96
tourn-size D 6 7
settings H cx - mut - fit - gen ‘ cx - mut - fit - gen ‘ cx - mut - fit - gen ‘

peak points

0.8-0.2-58-79

0.8-0.3-57-83

0.7-0.2-62-78

0.8-0.3-51-281

0.6-04-57-86

0.6-0.3-62-94

0.7-0.2-51-84

0.8-0.2-56-80

0.8-0.5-60 -85

0.6-0.3-49-80

0.7-0.2-55-49

0.6 -0.5-59-80

Table 2: Peak points of achieved fitness in 100 generations

the searches for more generations.

For this reason, results from searches ran for 625 generations are exam-
ined in the following sections. As before, Figures @ and EI show the graphs
in which the fitness scores and the corresponding generations are plotted. As
in the previous case, it is evident from the fitness plots that a higher popu-
lation size leads to a higher fitness on average. This observation is expected
as a higher population size corresponds to a larger number of solutions be-
ing considered in each iteration and therefore, it is more likely that a good
solution can be found within the optimized population. Compared to 100
generations, a general improvement in the fitness can be observed. With 64
individuals, a fitness between 60 and 75 is achieved. With 80 individuals, the
fitness values are roughly in the same range, with the difference that they ap-

pear more stable across the different parameter settings. With a population

30

6 RESULTS AND EVALUATION 31

80

I
%y O &
%, o
QQO
S
5, %
(I &

60

Figure 10: Best fitness achieved in 625 generations
Diagrams labelled with population-size - tournament-size

64-5 80-6 9% -7
550

500

Figure 11: Generation in which best fitness first achieved in 625 generations

Diagrams labelled with population-size - tournament-size

size of 96, the highest fitness values could be achieved, i.e. values between
70 and 80. In the generation plots, a much greater variation can be observed
through the different parameter settings. Overall, it can be noted that at
least an average of 200 generations is required to assume that the develop-
ment of the fitness has converged. In most cases, however, the highest fitness
was reached at about 400 generations.

Just as before, it is interesting to observe precisely which parameters
cause the peak points of the fitness. For this purpose, Table H contains the
peak points. According to this table, 0.8 for the crossover rate and 0.2 for
the mutation rate lead to the highest peak values for all population sizes. In
addition, the combinations 0.8 - 0.4, 0.7 - 0.2 and 0.6 - 0.2 appear twice in

31

6 RESULTS AND EVALUATION

32

pop-size 64 80 96
tourn-size D 6 7
’ settings H cx - mut - fit - gen ‘ cx - mut - fit - gen ‘ cx - mut - fit - gen ‘

peak points

0.6 -0.2-75-461

0.8-0.2-77-311

0.8-0.2-79-2376

0.8-0.2-74-450

0.7-0.3-77- 386

0.7-0.2-79- 381

08-0.3-71-277

0.7-0.2-75-459

0.6-0.2-78-409

0.8-0.4-71-430

0.8-0.4-73-333

0.6-0.5-76-280

Table 3: Peak points of achieved fitness in 625 generations

the peaks. Looking at the generations, roughly 400 generations are required
to achieve these peak values.

As previously mentioned, it is noticeable and comprehensible that with a
higher population size an overall higher fitness can be achieved, as more pos-
sible solutions are considered. Thus, it would be interesting to observe how
fitness evolves if the number of search simulations, i.e. fitness evaluations,
remains the same for the different population sizes. For this purpose, @,
and @ show the best fitness achieved after 20000, 40000 and 60000 evaluation
iterations. It can be observed that after 20000 iterations the achieved fitness
values are generally very similar between the 3 charts. To be more precise,
an average fitness of 60 to 70 can be achieved with all tested population sizes
and settings.

After 40000 simulation evaluations a difference between the diagrams can
be seen. With 64 individuals in a population, the fitness values remain about
the same as after 20000 iterations, only the settings 0.8 - 0.2 and 0.6 - 0.2 lead
to a fitness of about 75. With a population size of 80, an increase in fitness can
be observed with the different crossover and mutation pairs. Starting from
low crossover rates in combination with a high mutation rate, only a fitness
of 64 could be achieved. With increasing crossover and decreasing mutation
probabilities, an increase in the fitness values can be detected. In particular,
the highest fitness of 77 could be achieved with 0.8 as the crossover rate and
0.2 as the mutation rate. In the right-hand diagram (96 individuals), a more
even fitness occurs with different crossover and mutation settings, i.e. the

average fitness values achieved are approximately between 70 and 77.

32

6 RESULTS AND EVALUATION

33

Figure 12: Best fitness achieved in 20000 evaluation iterations

Diagrams labelled with population-size - tournament-size

Figure 13: Best fitness achieved in 40000 evaluation iterations

Diagrams labelled with population-size - tournament-size

64-5 80-6 96 -7

N 7
(2 W @
Sy o &
%,

% &
S ECR
A X5

Figure 14: Best fitness achieved in 60000 evaluation iterations

Diagrams labelled with population-size - tournament-size

33

80

60

80

78

6 RESULTS AND EVALUATION 34

Figure @ shows the average fitness achieved within 60000 iterations. As
with the diagrams in Figure @, a better overall fitness was still achieved
with larger population sizes. From these plots, a clearer tendency can be
seen as to which settings works best. Precisely, the highest fitness values,
approximately 75 to 80 in average, can be achieved with low mutation rates,
ie. 0.2 to 0.3.

Considering population sizes specifically, it can be concluded that with a
30% larger population, a 10% better fitness can be achieved within the same

number of evaluation iterations.

6.2.2 L2L

Using the genetic algorithm of the L2L framework the search was carried
out for 100 generations. After initial runs and testing of different parameter
settings, the best fitness achieved varied considerably. In order to focus on
the crossover and mutation probabilities and examine them more thoroughly
the population and tournament size were set to 96 and 7. This combination
provided the best results for the simulations with BehaviorSearch. While
performing more experiments using L2L, results have shown that increasing
both parameters does not lead to good fitness values. Therefore, the ranges
were expanded and the probability values were set lower, i.e. crossover rates
of 0.5 to 0.8 and mutation rates of 0.1 to 0.5 were investigated. As mentioned
in Section @, blend crossover uses a factor that extends the search range.
Since the GA of L2L applies this type of crossover, this parameter needs to
be set for the searches. When experimenting with very high and very low
rates, no performance improvements were obtained. Hence, the rate of 0.5
recommended by literature was taken. In order to be able to make more
accurate statements and conclusions, 4 different searches were carried out
for each parameter combination.

Both the average of the best fitness achieved and the average of the gener-
ation in which this fitness occurred for the first time are shown in Figures
and @ in relation to the crossing and mutation probabilities. At first glance,

it is noticeable that one parameter setting achieves by far the highest fitness

34

6 RESULTS AND EVALUATION

35

96 -7

Figure 15: Best fitness achieved in 100 generations

Diagram labelled with population-size - tournament-size

96-7

60

55

20

90

80

70

60

50

40

Figure 16: Generation in which best fitness first achieved in 100 generations

Diagram labelled with population-size - tournament-size

35

6 RESULTS AND EVALUATION 36

values, that is, 0.8 for crossover and 0.2 for mutation rate. With this setting,
an average fitness of 59 could be achieved. Apart from that, the range with
the mutation rate 0.3 and 0.4 together with the crossover 0.6 to 0.8 gives
a comparatively better fitness value. The exact fitness values are listed in
Table @ It shows that apart from the highest peak value of just about 60,
the best achieved fitness values are around 40. Figure @ shows that about
60 to 70 generations are required to reach these fitness values. However, as
with BehaviorSearch, this indicates that the search has not yet converged
after 100 generations and running the searches for some more generations

would likely achieve even higher fitness values.

pop-size 96
tourn-size 7
settings cx - mut - fit - gen

0.8-0.2-59-T74
0.6-0.3-43-61
0.8-04-43-70
0.7-0.3-42-90

peak points

Table 4: Peak points of achieved fitness in 100 generations

6.2.3 Comparison

In this section, the results of the two optimisation tools are compared in
terms of the fitness achieved as well as the crossover and mutation settings.
For a reliable comparison, the graph on the right in Figure H (data from
BehaviorSearch) together with Figure @ (data obtained from L2L) are con-
sidered. As a reminder, the data is obtained by using a population size of
96 and a tournament size of 7, and the search is performed for 100 genera-
tions. When comparing the average fitness values, the data obtained with
L2L show more variation overall with different parameter settings. Further-
more, BehaviorSearch achieves an average fitness value between 50 and 60,
while L2L’s fitness data is mostly between 30 and 40. Within 100 gener-

ations, there is thus a difference of about 20% between the algorithms in

36

6 RESULTS AND EVALUATION 37

terms of fitness. When looking at the generations in which the best fitness
could be achieved, it emerges that the values of BehaviorSearch are reached
on average after 80 generations. With L2L, the best fitness can be achieved
after about 70 generations. Thus, the best fitness values can be reached
about 13% earlier with L2L than with BehaviorSearch. It should be noted
here that these statements can only be concluded on the basis of data from
100 generations. As genetic algorithms are very stochastic the percentages
can change significantly when running the searches for longer iterations. In
terms of crossover and mutation probabilities, the settings with which the
peak values can be achieved are similar for both tools. In particular, the
combinations 0.8 - 0.2, 0.7 - 0.2 and 0.6 - 0.3 lead to the highest fitness val-
ues across the different population sizes and search tools. Especially with
L2L, the 0.8 - 0.2 setting showed significantly higher fitness than all other
settings tested. In summary, a higher crossover rate in combination with low
mutation rates gives the best fitness values.

Another point to investigate is the number of generations the search is
executed. For example Figure [12 shows that overall a very high fitness of 60
to 70 can already be achieved within 20000 iterations. In this context, it is
important to also observe how well the ant behaves in the simulation when
it reaches a certain fitness. After testing and observing the ant’s behaviour
in the simulation, it can be seen that the magnitude of fitness corresponds
directly to how well the ant navigates through the world. With a fitness of
less than 40, at best, the ant moves very slowly through the world, while
constantly spinning. During this process, it can only gather a very small
amount of food. With a fitness between 40 and 60, the ant can gather more
food and moves around through the world with only few collisions. However,
once the ant is trapped, i.e. surrounded by obstacles, it is constantly rotating
and does not manage to escape from the trap. Thus, from this point on,
the fitness value no longer increases. If the SNN is set with parameters
obtained from a run with an achieved fitness of 60 up to approximately 80,
the ant shows a much better behaviour. It is able to collect a lot of food
in a short amount of time with only very few collisions. Nevertheless, the

ant is still easily trapped and either takes a very long time to get out again

37

6 RESULTS AND EVALUATION 38

or has to encounter many harmful objects to escape the trap. Furthermore,
when changing the settings of the world, i.e. the position of the food and
rewards, the insect behaves worse and sometimes even crashes randomly with
an obstacle. With a fitness of over 80, the ant shows an excellent behaviour.
In most cases, it is able to find about half of the available food in less than
50000 simulation iterations without a single collision. Furthermore, the ant
has developed a trap escape mechanism that allows it to quickly get out of
traps with only few collisions. When changing the world setting, the ant still
shows good behaviour, indicating that no over-fitting has occurred, even if a
very high fitness has been achieved.

In conclusion, the ant can only display excellent behaviour if the searches
are ran for sufficient amount of time, i.e. about 400 generations. However,
an acceptable behaviour can be still achieved within approximately 200 to

250 generations.

6.3 Static and dynamic world

In this section, the results of the research with fixed and changing world
settings are considered. The resulting fitness score for each search can be
found in Figure @ With 20000 iterations, a changing world setting could not
achieve a better fitness with settings that provide a better performance, but
obtained a higher fitness with comparatively poorly functioning settings. In
the simulation, however, no improvement in the behaviour of the insect could
be observed in either case. In case of 10000 ticks, a slightly better fitness was
achieved in all 8 settings with a constantly changing insect world. But as in
the previous case, no improvements of the insect could be observed during the
simulation. Furthermore, unlike with 20000 ticks, the trap escape mechanism
did not occur anymore with half the number of simulation iterations. A
significant difference in fitness scores can be observed when the simulation
was run for only 5000 ticks during the search. Approximately 20% better
fitness scores could be achieved with a non-fixed insect environment setting.
However, the insect is not only caught very easily, as in the previous case,

but also cannot even escape from traps that are not too difficult to overcome.

38

6 RESULTS AND EVALUATION 39

In summary, the default setting of 20000 simulation ticks during the
fitness evaluation is required to achieve the desired behaviour of the ant

including the mechanism to escape from the obstacle traps.

6.4 Varying network topology

When examining the different network topologies, i.e. different number of
hidden-layer neurons, overall a very high fitness, i.e. between 70 and 80,
could be achieved with most of the networks (see Figure @) In some cases,
the SNNs with more than 10 neurons in the middle layer only achieved a
fitness of about 40. Since the set of network parameters to be optimised
is much larger, it is reasonable that a longer search is probably required to
achieve a higher fitness. In addition, as expected, the fitness values of SNNs
with only one second-layer neuron are relatively low. Since both actuators
cannot be controlled separately via this neuron, the importance of the weight
and especially the delay parameters becomes more significant. An exemplary
network is investigated in more detail in Section @

When testing the optimised SNNs in the NetLogo simulation, a differ-
ence in the insect’s performance is observed at different levels of network
complexity. With 2 up to 6 second-layer neurons, the ant shows a very good
behaviour. It moves quickly through the world and collects many rewards
with only few collisions. A similarly good performance could be achieved
with networks in which the motoneurons are directly influenced by the input
neurons. However, with more than six neurons in the middle layer, especially
with double-digit numbers of neurons, the insect’s performance in the sim-
ulation has decreased. This is referring to the fact that the ant sometimes
does not seem to know which movement to perform or that it hesitates before
performing an action. It can be explained by the fact that the network per-
forms more calculations in every situation, even if when the situation is not
that difficult to handle. Besides, it cannot be dismissed that a network op-
timised by longer searches could lead to an improvement in this behavioural

observation.

39

7 NETWORK ANALYSIS 40

7 Network Analysis

In this chapter, the optimised spiking neural networks are examined in more
detail. As previously mentioned, the insect performs very well with a small
number of second-layer neurons when controlled by an optimised network.
For this purpose, four exemplary networks with varying number of neurons
are examined in more detail in the following sections to find out how the ant’s
good behaviour is achieved. The graphical representation of all optimised
networks with up to 6 second-layer neurons can be found in the Appendices.

In order to better understand how the network dynamics work, a SNN
with two neurons in the middle layer is considered first. Afterwards, a more
complex network with six neurons is examined, in particular, to investigate
how the neuronal dynamics and the division of labour between the neurons
occur in this case. Next, as indicated in Section @, an analysis of the
network with only one neuron in the second layer is presented. Finally, for
the sake of interest, the last network to be considered in more detail is an

example of a SNN without a middle layer.

7.1 2 hidden-layer neurons

Figure shows an example network with two middle-layer neurons. In
order to understand how the actuators are controlled by these neurons, the
network parameters between layers two and three are analysed first. It can
be noticed that each of these neurons is responsible for controlling one of the
actuators. More specifically, the neuron labelled ”1” is strongly excitatory
(weight of 20) for rotation and strongly inhibitory for forward movement.
On the other hand, the neuron labelled "2” is strongly inhibitory (efficacy of
-20) for rotation and strongly excitatory for movement. It can be concluded
from this that the actions are mutually exclusive, i.e. the ant only performs
one action at a time. This is further reinforced by the fact that the neurons
of the middle layer are mutually inhibiting. In fact, this pattern, i.e. the
coordination of rotation and movement and the mutual inhibition, can be

found in each of the optimised networks of this complexity (see Appendices).

40

7 NETWORK ANALYSIS 41

89

Figure 17: Optimized network with 2 neurons in middle layer

Excitatory synapses are coloured green, inhibitory synapses are coloured red

Considering the input layer, it can be seen that the neurons responsible
for processing white and red colour sensations have a very strong excitatory
effect on the neuron labelled ”17, i.e. rotation. At the same time, both have
an inhibitory effect on neuron ”2” (movement). Hence, the insect rotates
when it observes an obstacle. It is noticeable that the inhibitory effect is a
bit stronger when perceiving a red patch than when sensing a white patch.
This can be explained by the fact that red patches are located all over the
virtual world, while white patches only appear as part of a border or wall.
Therefore, the ant behaves a little more cautiously when it perceives harm
than when it sees a wall. When the ant discovers a reward, it moves towards
it. In the network, the responsible neuron (marked "green”) has a relatively
strong excitatory effect (14.6) on neuron "2” and a very strong inhibitory
effect on the neuron controlling rotation. A particularly surprising discov-
ery can be observed in the influence of the harm-processing neuron on the
actuators. If the ant encounters harm, the movement neuron is triggered

immediately, while rotation is inhibited. This observation explains the ant’s

41

7 NETWORK ANALYSIS 42

ability to quickly escape from traps with only a few collisions. Because in
a situation where the ant is surrounded by harmful objects, it decides to
move forward instead of rotating. Although it risks some punishments from
collisions, it is able to escape the traps and search for more food from there
on. This behaviour is more beneficial than an otherwise constant rotation.
Because in that case, the insect would avoid punishments, but would not be
able to improve its fitness again, as it cannot collect further rewards. In the
case where the ant collects a reward, the neuron that triggers the movement
actuator is slightly excited and rotation is moderately inhibited. A simple
explanation for this behaviour would be that after collecting food, the ant
moves forward to locate other rewarding objects. Regarding the influence of
the heartbeat, there is a moderate excitatory effect on the neuron control-
ling the movement action. Consequently, the insect constantly moves small
steps forward if neuron 72” or the movement actuator is not inhibited. This
explains why the ant is overall moving very quickly throughout the world.
By examining the delay values, a predictive ability of the insect can be
detected. An example is given by the outgoing synapses of neuron ”1”. Pri-
marily, this neuron is triggered when the photoreceptors perceive an obstacle.
If the neuron "1” fires, the movement actuator is immediately inhibited (de-
lay of 1). In contrast, the incoming excitatory efficacy of the rotation neuron
is strongly delayed (delay of 6). It shows that although the ant perceives a
harm, it does not turn around immediately, and instead makes a turn a few
iterations later. Since the insect has a visual distance of up to four patches,
it knows that the obstacle is still a few steps away, and therefore a turn is

not necessary until a few steps have been taken in that direction.

7.2 6 hidden-layer neurons

After examining a well-functioning network with 2 middle layer neurons in
the previous section, this chapter analyses an optimised network with six
neurons in the second layer (see Figure) As this network is much more
complex, containing more connections, the internal network calculations are

influenced by a larger set of parameters. Therefore, investigating the network

42

7 NETWORK ANALYSIS 43

18 s
-4.411 2013
F 25 19812
16861 1171
asTs 7
~ 201 1
9813
: 2611
5212 2017 1\
&= -
20173 11.816
17414 16812
2011
3316
2014
2011

LR

0O~

mm-h\
BOGSNT

NG
SC0po!

Figure 18: Optimized network with 6 neurons in middle layer

Excitatory synapses are coloured green, inhibitory synapses are coloured red

in layers allows for a more comprehensive analysis. First, the tasks of the
middle neurons regarding the control of the motoneurons are determined.
From the weight parameters it can be derived that the neurons labelled ”17,
72”7 and 75”7 are strongly excitatory for the rotation actuator. Neuron 737,
on the other hand, is responsible for controlling locomotion. Neuron "4” has
an excitatory effect on both rotation and movement, but much more strongly
on the latter. Neuron "6”, however, has no significant influence on either of
the motoneurons.

Next, an investigation on the efficacy of the input neurons is presented
to understand how the network responds to a particular stimulation. The
outgoing synapses of the neuron responsible for processing white colour sensa-
tion reveal that mainly the neurons that trigger rotation are strongly excited,
while others are inhibited. This is reinforced by the fact that these neurons
are mutually excitatory. However, during this process, neuron ”"6” is also

triggered, which strongly inhibits each of these neurons except for neuron

43

7 NETWORK ANALYSIS 44

”17. This indicates that neuron "6” is responsible for reducing the effective-
ness of these neurons, which results in the ant not rotating too much. When
a red patch is detected, the same neurons are triggered causing the ant to
rotate. However, in this case, neuron 76" is slightly inhibited, revealing that
the ant behaves more cautiously when facing red objects. Given the situation
in which the insect has its focus on a green object, it moves towards it. In
the network, neuron ”3” is triggered, which is responsible for locomotion.
As with the SNN considered in the previous section, the trap escaping
mechanism is found with the neuron labelled ”harm”. A collision with an ob-
stacle is handled by triggering neuron ”3” (forward movement) and mostly
inhibiting the other middle-layer neurons. However, when looking at the
computations of the network after collecting a reward, it becomes appar-
ent that mainly neuron ”5” (strongly excitatory for rotation) is activated.
This observation suggests that the ant changes its direction after collecting
a reward in order to look out for more nearby. Finally, the efficacy of the
heartbeat is exclusively excitatory for the neuron that influences forward
movement. As already mentioned, this explains why the ant can move fairly

quickly through the virtual environment.

7.3 1 hidden-layer neuron

As mentioned before, the networks containing only one neuron in the middle
layer achieved a comparatively low fitness value, since both actuators cannot
be controlled separately. Nevertheless, it is remarkable that the ant was still
able to collect over 20 rewards when controlled with the network shown in
Figure @ without a single collision. From this network it can be noticed
that neuron ”1” has a significantly stronger excitatory effect on the rotation
actuator than on the movement actuator. In addition, the signals arriving
at the "rotate” motoneuron are strongly delayed, whereas the signals sent to
the movement actuator are effective immediately. Combining both weight
and delay values, it shows that the ant the rotation actuator is triggered
constantly, but with small breaks in between due to the strong delay. Due

to the low weight of the synapse controlling the "movement” motoneuron,

44

7 NETWORK ANALYSIS 45

N
o
(4]

aai
-2015

17.216

26

;N
(=]
()]

Figure 19: Optimized network with 1 neuron in middle layer

Excitatory synapses are coloured green, inhibitory synapses are coloured red

combined with the decay mechanism, the membrane potential increases very
slowly but steadily because of the immediate excitatory effect. Therefore,
this motoneuron fires at longer intervals.

In terms of the neurons in the first layer, it can be seen that the only
neurons that can trigger neuron ”1” to fire are the neuron that processes green
colour sensation and the heartbeat neuron. Both have a strong excitatory
effect, while the other synapses have an inhibitory effect. When an obstacle,
i.e. a white or red spot, is perceived, the middle layer neuron is moderately
inhibited. As a result, the overall firing rate of neuron ”1” is slowed down.
This has the consequence that it is harder for the membrane potential of
the movement actuator to reach the firing threshold due to the long decay
time. Hence, the ant mainly rotates in this situation. When the insect
comes into contact with a reward or harm, neuron ”1” is strongly inhibited.
Consequently, neuron ”1” hardly fires at all, which means that the movement

actuator can no longer reach the firing threshold. As for the ant’s behaviour,

45

7 NETWORK ANALYSIS 46

it exclusively rotates when it collides with an obstacle or collects a reward.
Overall, the ant moves through the world while constantly rotating and
avoids forward movement by lowering the firing rate of the middle layer
neuron. With this network, not only the importance of weight and delay
parameters, but also the properties and benefits of a spiking neural network

become more obvious.

7.4 0 hidden-layer neurons

Figure 20: Optimized network with 0 neurons in middle layer

Excitatory synapses are coloured green, inhibitory synapses are coloured red

In the last section of this chapter, an optimised network without middle-
layer neurons is considered, i.e. the input neurons directly influence the
actuators. Mutual inhibition can be found with the two motoneurons. There
is a much stronger inhibitory effect coming from the neuron labelled "move”
than from the neuron labelled "rotate”. When the ant perceives a white or

red coloured patch, i.e. an obstacle, the rotation actuator is strongly excited

46

8 MULTI-ANT MODEL 47

and due to the short delay, the movement actuator is almost immediately in-
hibited during this process. When the ant perceives a white or red coloured
patch, i.e. an obstacle, the rotation actuator is strongly excited and the
neuron labelled "move is inhibited, particularly strong for red visual sensa-
tion. The high delay values, as in the example network discussed in Section
El], indicate the ant’s ability to predict future events and behave accord-
ingly. When recognising a reward, the movement neuron is only moderately
triggered. This reflects the ant’s overall cautious behaviour when moving
through the world. A collision with harm is handled in the same way as all
the networks examined in the previous sections, i.e. it is moving forward in
order to escape the harm quickly. After collecting food, the insect rotates
slightly to look for more food that is in reach. As also previously indicated,
the excitatory efficacy of the artificial heart on the movement actuator en-
ables the insect to move quickly throughout the world.

Overall, a very similar internal computation compared to the network
with two middle-layer neurons (Figure ll]) can be observed. This is further
confirmed based on the achieved fitness as well as when testing the optimised

network in the simulation, as the ant shows a likewise excellent behaviour.

8 Multi-Ant Model

In this section, a modified version of the model described in Chapter B is
discussed. Instead of simulating a single ant, this version models several
ants, precisely 10 of them, that move through the same virtual world. Besides
gathering food and avoiding obstacles, another goal of the ants is to avoid
collision with each other. Since in the simulation the ants are coloured yellow,
this model is extended by another photoreceptor and an afferent neuron that
is responsible for processing this colour. An exemplary network is shown in
Figure @

Since the ants should avoid each other, a collision leads to a punishment,
i.e. a reduction in the fitness score. As mentioned earlier, the challenge

in using a GA for optimisation is to define a suitable fitness function. In

47

8 MULTI-ANT MODEL 48

Lo
Wi
o=

ROOG = aOD,
PRADG H—0O)
Zrhbo 000

N

T

N2
T

Ki

Y
R

-

PEINTILIN
Do
. .

o
oNo Rpn5P

PR

— W,
VNS
Awﬂgma ~

SN
— 0w
[SINTS

P —

N
pury
W

Figure 21: Optimized network of Multi-Ant model

this simulation, the ants should prefer to avoid each other over collecting
food and dodging obstacles. First, the optimisation was performed with
a penalty of -5 for ants crashing into each other. However, when testing
the optimised network in the simulation, the ants stop moving when they
perceive each other and remain in that position until the simulation finishes.
This observation indicates that the penalty was chosen too high. Therefore,
penalties of -2 and -3 were tested in the following optimisation searches.
By decreasing the penalty values, this behaviour no longer occurs. The
insects manage to find many rewards in a short time without colliding with
a single obstacle or bumping into each other. To be more precise, over 150 of
approximately 200 rewards were collected by the ants. As depicted in Figure
@, the ants turn slightly when they perceive a yellow object, i.e. another

ant.

48

9 CONCLUSION 49

9 Conclusion

9.1 Summary

The aim of this work is to analyse genetic algorithm hyperparameters and ex-
tract settings that lead to the best performance of the GAs. For this purpose,
a model that simulates an artificial ant navigating through a virtual environ-
ment is considered and evolved. Ideally, the ant behaves in such a way that it
finds lots of food as quickly as possible while avoiding any obstacles. During
this process, it is controlled by an SNN in which each connection (synapse)
has a weight and a delay parameter. To achieve the desired behaviour of
the ant, it is necessary to optimise these parameters. For this purpose, GAs
from two different optimisation tools (L2L and BehaviorSearch) are applied.
Like many meta-heuristic search methods, genetic algorithms contain a set
of hyperparameters that influence the progress of the search.

In this work, both optimisation tools are analysed in terms of best hy-
perparameter settings and achieved fitness. From several search experiments
and obtained data sets, the general conclusion is that a high crossover rate
and a low mutation rate achieve the best results in terms of fitness score. To
be more precise, the settings 0.7 - 0.2, 0.8 - 0.2, 0.6 - 0.3 (crossover rate to
mutation rate) have shown to perform very well for both tools. In particular,
the pair 0.8 - 0.2 achieved by far the highest fitness value on average for L2L.
In terms of population size, a larger group of individuals generally achieves
better search results with a tournament to population size ratio of 0.07 - 0.08.
Furthermore, at least 200 generations are required until the search converges
to a stable fitness. However, since experiments have shown that the fitness
value directly corresponds to how well the ant behaves in the simulation, the
searches need to be performed for about 400-500 generations to achieve the
desired behaviour of the ant. In addition, experiments were conducted with
simulation iterations of different lengths when evaluating the fitness values
in order to reduce the risk of overfitting. Fortunately, the simulation tests
have shown that as long as the achieved fitness is high enough, i.e. above

80, overfitting does not seem to occur. Furthermore, the experiments have

49

9 CONCLUSION 20

shown that at least 20000 iterations are required for the ant to obtain the
ability to efficiently escape from traps. When investigating different network
architectures, the results reveal that only two neurons in the middle layer
are necessary to obtain a well performing ant. A similar SNN consisting of
only the input and output layers show similarly good performance. Finally,
using a model that simulates several ants, it was possible to show that the
ants exhibit a satisfying behaviour in a world with not only fixed obstacles,

but also with moving agents that are supposed to be avoided.

9.2 Outlook

In this work, mainly the parameters of the genetic algorithms were investi-
gated, while other model parameters remained unchanged. With the possi-
bility of achieving an even better performance of the insect, the optimisation
of the parameters influencing the spiking neurons listed in Table H offer a pos-
sible suggestion for future research. In addition, the focus of this work was
mainly on the achieved fitness values, however, the data sets obtained from
the searches also contain candidate solutions that were considered through-
out each search run. Thus, possible research suggestions would be a) a deeper
investigation of individuals evolving throughout the generations, i.e. devel-
opment of solution candidates and b) the identification of patterns of synap-
tic parameter settings that achieved good or bad performance. During the
investigation of the GA parameters, one limitation in the influence of the
search process became obvious. That is, after setting these parameters, they
remain fixed during the whole search run. Even though genetic algorithms
have the ability to escape local optima, it can be observed that the searches
will converge, i.e. a further improvement of the fitness score is very unlike.
To counteract this occurrence, Kamoi et al. [41] have proposed an improved
genetic algorithm which adapt the GA parameter settings during the search
process, whenever it converges. In particular, the diversity is measured based
on the ratio between the fitness of the best individual and average fitness in
the population. Hence, the application of an improved genetic algorithm to

the considered model could be a suggestion for future research as well.

20

REFERENCES o1

References

1]

2]

3]

[5]

[6]

C. C. Aggarwal. Neural Networks and Deep Learning: A Textbook.
Springer International Publishing, 2018.

W. Maass. Networks of Spiking Neurons: The Third Generation of
Neural Network Models. Neural Networks, 10(9):1659-1671, 1997.

S. R. Nandakumar, S. R. Kulkarni, A. V. Babu, and B. Rajendran.
Building Brain-Inspired Computing Systems: Examining the Role of
Nanoscale Devices. IEEE Nanotechnology Magazine, 12(3):19-35, 2018.

A. Abusnaina and R. Abdullah. Spiking Neuron Models: A Review. In-
ternational Journal of Digital Content Technology and its Applications,
8:14-21, 2014.

W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

S. Scarpetta, I. Apicella, L. Minati, and A. de Candia. Hysteresis, neural
avalanches, and critical behavior near a first-order transition of a spiking
neural network. Physical review. FE, 97(6), 2018.

A. Ororbia. Spiking Neural Predictive Coding for Continual Learning
from Data Streams. ArXiv, abs/1908.08655, 2019.

A. van Meegen and S. J. van Albada. A Microscopic Theory of Intrinsic
Timescales in Spiking Neural Networks. ArXiv, abs/1909.01908, 2019.

T. Masquelier, R. Guyonneau, and S. J. Thorpe. Leaky Integrate-and-
Fire (LIF) neuron. https://plos.figshare.com/articles/figure/
_Leaky Integrate and Fire LIF neuron /609821/1, 2015.

M. Mitchell. Genetic Algorithms: An Overview. Complezity, 1(1):31-39,
1995.

H. Mallot. Computational Neuroscience: A First Course. Springer
International Publishing, 2013.

51

https://plos.figshare.com/articles/figure/_Leaky_Integrate_and_Fire_LIF_neuron_/609821/1
https://plos.figshare.com/articles/figure/_Leaky_Integrate_and_Fire_LIF_neuron_/609821/1

REFERENCES 52

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Bonabeau. Social Insect Colonies as Complex Adaptive Systems.
Ecosystems, 1(5):437-443, 1998.

L. E. Quevillon, E. M. Hanks, S. Bansal, and D. P. Hughes. Social,
spatial and temporal organization in a complex insect society. Scientific
Reports, 5(1), 2015.

S. Katoch, S. S. Chauhan, and V. Kumar. A review on genetic algo-
rithm: past, present, and future. Multimedia Tools and Applications,
80(5):8091-8126, 2021.

U. Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/,
1999. Accessed: 2021-09-10.

A. Subramoney, S. Diaz-Pier, A. Rao, F. Scherr, D. Salaj, T. Bohnstingl,
J. Jordan, N. Kopp, D. Hackhofer, and S. Stekovic. IGITUGraz/L2L:
v1.0.0-beta. https://doi.org/10.5281/zenodo.2590760, 2019. Ac-
cessed: 2021-09-10.

F. Stonedahl and U. Wilensky. BehaviorSearch. http://
behaviorsearch.org, 2010. Accessed: 2021-09-10.

T. S. Clawson, S. Ferrari, S. B. Fuller, and R. J. Wood. Spiking Neu-
ral Network (SNN) Control of a Flapping Insect-scale Robot. In 2016
IEEE 55th Conference on Decision and Control (CDC), pages 3381—
3388. IEEE, 2016.

G. Tang and K. P. Michmizos. Gridbot: An autonomous robot con-
trolled by a Spiking Neural Network mimicking the brain’s navigational
system. In Proceedings of the International Conference on Neuromor-

phic Systems, pages 1-8. Association for Computing Machinery, 2018.

7. Bing, C. Meschede, G. Chen, A. Knoll, and K. Huang. Indirect and
Direct Training of Spiking Neural Networks for End-to-End Control of

a Lane-Keeping Vehicle. Neural networks : the official journal of the
International Neural Network Society, 121:21-36, 2020.

52

http://ccl.northwestern.edu/netlogo/
https://doi.org/10.5281/zenodo.2590760
http://behaviorsearch.org
http://behaviorsearch.org

REFERENCES 23

[21]

22]

23]

[24]

[25]

[27]

28]

S. Chevallier, H. Paugam-Moisy, and M. Sebag. SpikeAnts, a spiking
neuron network modelling the emergence of organization in a complex
system. In Advances in Neural Information Processing Systems 23 (NIPS
2010), pages 379-387. Curran Associates, Inc., 2010.

E. Eskandari, A. Ahmadi, S. Gomar, M. Ahmadi, and M. Saif. Evolving
Spiking Neural Networks of artificial creatures using Genetic Algorithm.
In 2016 International Joint Conference on Neural Networks (IJCNN),
pages 411-418. IEEE, 2016.

O. Zahra, S. Tolu, and D. Navarro-Alarcon. Differential Mapping Spik-
ing Neural Network for Sensor-Based Robot Control. Bioinspiration &
Biomimetics, 16(3), 2021.

S. A. Lobov, A. N. Mikhaylov, M. Shamshin, V. A. Makarov, and V. B.
Kazantsev. Spatial Properties of STDP in a Self-Learning Spiking Neu-
ral Network Enable Controlling a Mobile Robot. Frontiers in Neuro-
science, 14, 2020.

7. Bing, C. Meschede, F. Rohrbein, K. Huang, and A. C. Knoll. A
Survey of Robotics Control Based on Learning-Inspired Spiking Neural

Networks. Frontiers in Neurorobotics, 12, 2018.

H. Asgari, B. M. Maybodi, R. Kreiser, and Y. Sandamirskaya. Digital
Multiplier-Less Spiking Neural Network Architecture of Reinforcement
Learning in a Context-Dependent Task. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 10(4):498-511, 2020.

A. S. Lele, Y. Fang, J. Ting, and A. Raychowdhury. Learning to Walk:
Spike Based Reinforcement Learning for Hexapod Robot Central Pat-
tern Generation. In 2020 2nd IEEFE International Conference on Artifi-
cial Intelligence Circuits and Systems (AICAS), pages 208-212. IEEE,
2020.

J. Pu, V. P. Nambiar, A. T. Do, and W. L. Goh. Block-Based Spiking
Neural Network Hardware with Deme Genetic Algorithm. In 2019 IEEFE

23

REFERENCES o4

[29]

[30]

[31]

[34]

[35]

International Symposium on Circuits and Systems (ISCAS), pages 1-5.
[EEE, 2019.

I. Ezenwe, A. Joshi, and K. Wong-Lin. Genetic Algorithmic Parameter
Optimisation of a Recurrent Spiking Neural Network Model. In 2020
31st Irish Signals and Systems Conference (ISSC), pages 1-6. IEEE,
2020.

H. Sasaki and N. Kubota. Distributed Behavior Learning of Multiple
Mobile Robots based on Spiking Neural Network and Steady-State Ge-
netic Algorithm. In 2009 IEEE Workshop on Robotic Intelligence in
Informationally Structured Space, pages 73-78. IEEE, 2009.

S. H. Mousavi-Avval, S. Rafiee, M. Sharifi, S. Hosseinpour, B. Notar-
nicola, G. Tassielli, and P. A. Renzulli. Application of multi-objective
genetic algorithms for optimization of energy, economics and environ-

mental life cycle assessment in oilseed production. Journal of Cleaner
Production, 140(2):804-815, 2017.

A. C. Brooks. Genetic Algorithms and Public Economics. Journal of
Public Economic Theory, 2(4):493-513, 2000.

E. Rodrigues, L. Rodrigues, L. S. N. Oliveira, A. Conci, and P. Liatsis.
Automated Recognition of the Pericardium Contour on Processed CT
Images Using Genetic Algorithms. Computers in Biology and Medicine,
87:38-45, 2017.

N. Bochud, Q. Vallet, Y. Bala, H. Follet, J. Minonzio, and P. Laugier.
Genetic algorithms-based inversion of multimode guided waves for corti-
cal bone characterization. Physics in medicine and biology, 61(19):6953—
6974, 2016.

N. Brill and D. Tyler. Optimizing Nerve Cuff Stimulation of Targeted
Regions Through Use of Genetic Algorithms. In 2011 Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology
Society, pages 5811-5814. IEEE, 2011.

o4

REFERENCES 95

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. M. Ahmed and Y. M. Wazery. Genetic Algorithms for Discovering
Community Cores Hidden within Multidimensional Social Networks. In
2019 International Conference on Innovative Trends in Computer En-
gineering (ITCE), pages 142-148. IEEE, 2019.

D. Bucur and G. Iacca. Influence Maximization in Social Networks
with Genetic Algorithms. In Applications of Evolutionary Computation,
pages 379-392. Springer International Publishing, 2016.

A. Cachéon and R. Véazquez. Tuning the parameters of an integrate
and fire neuron via a genetic algorithm for solving pattern recognition
problems. Neurocomputing, 148:187-197, 2015.

N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and
M. N. Vrahatis. Spiking Neural Network Training Using Evolutionary
Algorithms. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., pages 2190-2194. IEEE, 2005.

F. C. Su and W. L. Wu. Design and testing of a genetic algorithm
neural network in the assessment of gait patterns. Medical engineering
& physics, 22(1):67-74, 2000.

S. Kamoi, R. Iwai, H. Kinjo, and T. Yamamoto. Pulse Pattern Train-
ing of Spiking Neural Networks Using Improved Genetic Algorithm. In
Proceedings 2003 IEEE International Symposium on Computational In-
telligence in Robotics and Automation. Computational Intelligence in
Robotics and Automation for the New Millennium (Cat. No.03EX694),
pages 977-981. IEEE, 2003.

M. S. Farahani and S. H. R. Hajiagha. Forecasting stock price using inte-
grated artificial neural network and metaheuristic algorithms compared

to time series models. Soft Computing, pages 1-31, 2021.

J. Piri, B. Pirzadeh, B. Keshtegar, and M. Givehchi. Reliability analysis

of pumping station for sewage network using hybrid neural networks -

95

REFERENCES 26

[44]

[45]

[46]

[47]

[48]

[49]

[50]

genetic algorithm and method of moment. Process Safety and Environ-
mental Protection, 145:39-51, 2021.

A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Ham-
mouri, and V. B. S. Prasath. Choosing Mutation and Crossover Ratios
for Genetic Algorithms—A Review with a New Dynamic Approach. In-
formation, 10(12), 2019.

M. Sipper, W. Fu, K. Ahuja, and J. H. Moore. Investigating the param-
eter space of evolutionary algorithms. BioData Mining, 11(1), 2018.

C. Darwin. On the Origin of Species. John Murray, London, 1859.

S. N. Deepa S. N. Sivanandam. Introduction to Genetic Algorithms.
Springer International Publishing, 2008.

O. Kramer. Genetic Algorithm FEssentials. Springer International Pub-
lishing, 2017.

J. H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.

S. A. Forhad, S. Hossain, M. O. Rahman, M. M. Rahaman, M. Haque,
and M. K. H. Patwary. An improved fitness function for automated
cryptanalysis using genetic algorithm. Indonesian Journal of Electrical
Engineering and Computer Science, 13(2):643-648, 2019.

S. Renjith and C. Anjali. Fitness Function in Genetic Algorithm based
Information Filtering - A Survey. 2016.

J. Khalid. Selection Methods for Genetic Algorithms. International
Journal of Emerging Sciences, 3(4):333-344, 2013.

S. Nitasha and T. Kumar. Study of Various Crossover Operators in
Genetic Algorithms. International Journal of Computer Science and
Information Technologies, 5(6):7235-7238, 2014.

o6

REFERENCES o7

[55]

[56]

[58]

[59]

[60]

[61]

[62]

A. Jenkins, V. Gupta, A. Myrick, and M. Lenoir. Variations of Genetic
Algorithms. ArXiv, abs/1911.00490, 2019.

A. B. A. Hassanat and E. Alkafaween. On Enhancing Genetic Algo-
rithms Using New Crossovers. International Journal of Computer Ap-
plications in Technology, 55(3):202-212, 2017.

S. L. Siew Mooi, A. B. Md Sultan, M. Sulaiman, A. Mustapha, and K. Y.
Leong. Crossover and Mutation Operators of Genetic Algorithms. In-

ternational Journal of Machine Learning and Computing, 7:9-12, 2017.

C. Jimenez-Romero, D. Sousa-Rodrigues, J. H. Johnson, and V. Ramos.
A Model for Foraging Ants, Controlled by Spiking Neural Networks and
Double Pheromones. ArXiv, abs/1507.08467, 2015.

C. Jimenez-Romero and J. H. Johnson. SpikingLab: modelling agents
controlled by Spiking Neural Networks in Netlogo. Neural Computing
& Applications, 28:755-764, 2016.

M. Ferreira, J. Bagari¢, J. Lanza-Gutierrez, S. Mendes, J. Pereira, and
J. A. Gomez-Pulido. On the Use of Perfect Sequences and Genetic
Algorithms for Estimating the Indoor Location of Wireless Sensor. In-
ternational Journal of Distributed Sensor Networks, 11:1-12, 2015.

F. Fortin, F. De Rainville, M. Gardner, M. Parizeau, and C. Gagné.
DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learn-
ing Research, 13:2171-2175, 2012.

M. Abido. Multiobjective Evolutionary Algorithms for Electric Power
Dispatch Problem. In IEEE Transactions on Fvolutionary Computation
- TEC, pages 47-82. IEEE, 20009.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15:1929-1958, 2014.

o7

Appendices

Parameter Value

Spiking Neurons

Resting potential -65
Firing threshold -55
Decay rate 0.08
Refractory potential -75
Refractory duration 3
Spike per stimulus 1
Simulation

View distance 4
Steps forward 0.4
Rotation degrees 4
Fitness

Reward 1
Punishment -1.5

Table 5: Fixed model parameters

o8

Population-Size: 32

Tournament-Size: 3

Mutation-Rate: 0.2
Evaluation Limit: 1000 (=32 Generations)

Seed

Crossover-Rate | Mean | Median | Standard Deviation | Seed 1 | Seed2 | Seed3 | Seed4 Seed5 | Seed6 Seed7 | Seed8 Seed9 | Seed 10

0.0 13.6 15.0 8.8 27 19 20 15 3 1 15 0 15 21
0.1 15 18.0 111 15 25 24 27 5 0 29 1 3 21
0.2 16.1 18.5 8.6 15 20 25 15 21 0 17 1 27 20
0.3 164 | 175 10.1 0 36 23 15 14 0 21 20 16 19
0.4 125 17.5 10.6 0 30 21 18 18 0 20 1 0 17
0.5 15.0 15.0 11.0 16 35 28 16 2 10 14 1 3 25
0.6 21.8 19.5 9.2 16 31 22 17 16 28 30 4 17 37
0.7 132 15.0 82 0 20 17 13 25 1 18 7 0 21
0.8 17.9 19.0 6.6 12 23 21 14 1 6 17 24 24 27
0.9 185 | 215 9.0 1 32 22 14 21 6 16 28 22 23
1.0 13.6 13.0 10.8 1 34 21 2 18 7 17 1 9 26

Figure 22: Fitness scores of crossover-rate exploration 1

Fixed parameters: population-size 32, tournament-size 3, mutation-rate: 0.2

Population-Size: 32

Tournament-Size: 3

Mutation-Rate: 0.4
Evaluation Limit: 1000 (=32 Generations)

Seed

Crossover-Rate | Mean | Median | Standard Deviation | Seed 1 | Seed 2 | Seed3 | Seed4 | Seed5 Seed6 Seed7 Seed8 | Seed9 | Seed 10

0.0 164 | 16.0 6.7 16 22 16 29 16 3 19 8 16 19
0.1 17.0 17.0 10.6 6 16 20 33 21 7 14 0 18 35
0.2 135 15.0 9.5 1 21 24 17 16 7 14 4 1 30
0.3 134 | 13.0 6.6 6 6 23 16 21 9 22 5 12 14
0.4 18.2 17.0 7.8 27 22 17 16 16 10 17 2 28 27
0.5 14.0 15.0 6.0 6 20 16 9 18 6 14 8 21 22
0.6 18.5 18.0 9.3 17 19 41 8 14 22 21 S 15 23
0.7 184 | 19.0 55 20 22 20 7 18 21 18 29 13 16
0.8 175 175 8.8 28 33 19 16 10 21 22 1 14 1
0.9 16.0 17.0 9.7 10 24 17 29 6 1 17 30 5 21
1.0 171 16.5 10.5 10 18 43 15 20 16 17 0 10 22

Figure 23: Fitness scores of crossover-rate exploration 2

Fixed parameters: population-size 32, tournament-size 3, mutation-rate: 0.4

29

Population-Size: 32

Tournament-Size: 3

Mutation-Rate: 0.5
Evaluation Limit: 1000 (=32 Generations)

Seed

Crossover-Rate | Mean | Median | Standard Deviation | Seed 1 | Seed2 | Seed3 | Seed4 | Seed5 | Seed6 Seed7 | Seed8 Seed9 | Seed 10

0.0 153 | 16.0 7.4 4 16 25 17 17 4 16 10 16 28
0.1 14 15.5 8.1 18 16 21 21 1 15 14 1 7 26
0.2 17.6 | 17.0 9.1 22 38 23 17 14 3 17 16 6 20
0.3 15.1 15.5 8.2 4 31 16 3 16 15 24 15 8 19
0.4 156 | 165 52 20 14 21 17 7 14 16 6 19 22
0.5 157 | 17.0 6.6 17 17 23 3 21 15 17 4 22 18
0.6 20.1 16.0 10.8 8 23 27 16 13 30 16 8 15 45
0.7 16.7 | 18.0 4.8 14 5 21 20 15 21 14 16 20 21
0.8 142 155 8.2 6 28 22 16 16 0 14 4 15 21
0.9 129 140 6.2 3 14 20 5 12 16 23 6 14 16
1.0 15.1 16.0 7.4 6 17 27 14 17 6 15 4 24 21

Figure 24: Fitness scores of crossover-rate exploration 3

Fixed parameters: population-size 32, tournament-size 3, mutation-rate: 0.5

Population-Size: 32

Tournament-Size: 3

Crossover-Rate: 0.6
Evaluation Limit: 1000 (=32 Generations)

Seed

Mutation-Rate | Mean | Median | Standard Deviation | Seed 1 | Seed2 | Seed3 | Seed4 | Seed5 | Seed6 Seed7 | Seed8 | Seed9 | Seed 10

0.0 5.0 4.0 5.5 0 6 6 3 5 0 14 0 0 16
0.1 131 17.0 10.3 0 16 24 27 18 0 21 4 0 21
0.2 21.8 | 195 9.2 16 31 22 17 16 28 30 4 17 37
03 175 | 170 77 20 28 18 15 16 1 16 10 24 27
0.4 183 | 17.0 9.3 17 17 a1 8 14 22 21 5 15 23
0.5 20.1 16.0 10.8 8 23 27 16 13 30 16 8 15 45
0.6 129 | 140 71 14 9 17 16 19 6 14 2 5 27
0.7 163 | 16.5 5.7 20 20 17 15 6 16 25 16 7 21
0.8 171 16.5 6.3 15 31 16 19 6 17 20 10 16 21
0.9 127 145 6.6 15 18 17 10 3 3 14 24 6 17
1.0 13.5 | 140 4.2 19 15 9 9 6 13 16 13 16 19

Figure 25: Fitness scores of mutation-rate exploration 1

Fixed parameters: population-size 32, tournament-size 3, crossover-rate: 0.6

60

Population-Size: 32

Tournament-Size: 3

Crossover-Rate: 0.7
Evaluation Limit: 1000 (=32 Generations)

Seed

Mutation-Rate | Mean | Median | Standard Deviation | Seed 1 | Seed2 | Seed3 | Seed4 Seed5 | Seed6 Seed7 | Seed8 | Seed9 | Seed 10

0.0 57 4.5 5.8 0 17 7 3 6 0 14 0 1 9

0.1 124 1 13.0 10.0 33 6 19 16 10 0 17 0 3 20
0.2 13.2 15.0 8.2 0 20 17 13 25 1 18 7 0 21
0.3 14.8 17.5 9.0 0 16 19 23 13 1 20 7 20 29
0.4 184 | 19.0 55 20 22 20 7 18 21 18 29 13 16
0.5 16.6 17.5 4.8 14 5 21 20 15 21 14 15 20 21
0.6 16.3 17.0 5.5 20 26 20 19 16 10 14 5 15 18
0.7 121 14.0 6.8 15 15 20 1 7 5 14 6 14 24
0.8 126 14.0 4.9 13 15 15 16 6 1 14 14 14 18
0.9 14.6 14.0 7.9, 14 13 6 27 6 3 15 14 24 24
1.0 123 15.0 6.0 7 21 17 10 1 16 15 15 5 16

Figure 26: Fitness scores of mutation-rate exploration 2

Fixed parameters: population-size 32, tournament-size 3, crossover-rate: 0.7

Population-Size: 32

Tournament-Size: 3

Crossover-Rate: 0.8
Evaluation Limit: 1000 (=32 Generations)

Seed

Mutation-Rate | Mean | Median | Standard Deviation | Seed 1 | Seed2 | Seed3 | Seed4 | Seed5 | Seed 6 | Seed 7 | Seed8 | Seed 9 ' Seed 10

0.0 55 3.0 7.2 0 6 2 0 4 0 14 0 6 23
0.1 155 | 175 9.9 0 6 21 18 15 30 17 0 27 21
0.2 16.0 | 155 73 12 23 21 14 1 6 17 24 5 27
0.3 1.6 120 7.6 16 8 21 17 4 3 22 1 6 18
0.4 175 175 8.8 28 33 19 16 10 21 22 1 14 1
0.5 142 155 8.2 6 28 22 16 16 0 14 4 15 21
0.6 143 | 145 7.8 12 19 20 14 6 3 15 17 6 31
0.7 133 145 6.1 2 23 20 16 8 15 14 10 7 18
0.8 11.8 120 7.1 4 13 17 1 22 0 14 7 7 23
0.9 132 | 145 7.7 15 24 22 20 13 2 14 3 3 16
1.0 148 | 145 6.6 15 13 6 6 27 9 14 21 15 22

Figure 27: Fitness scores of mutation-rate exploration 3

Fixed parameters: population-size 32, tournament-size 3, crossover-rate: 0.8

61

62

Population-Size
16
32
48
64

80

Average
10.1
185
17.6
15.7

12

Median

7.0

18.0

17.5

17.0

11.5

Ratio

0.188

0.094

0.063

0.047

0.038

Seed 1

8

17

22

20

Mutation-Rate: 0.4
Tournament-Size: 3
Crossover-Rate: 0.6
Evaluation Limit: 1000 (=32 Generations)

Seed2 | Seed 3

Seed4 | Seed5 Seed6 Seed7 | Seed8

24

Seed

6

22

23

27

0

5

29

Seed 10

23

Figure 28: Fitness scores of population-size exploration 1

Fixed parameters: tournament-size 3, crossover-rate: 0.6, mutation-rate:

Population-Size
16
32
48
64

80

Average
16.2

21

16.3
20.6

16.7

Median

17.0

21.0

18.5

19.5

16.0

Ratio

0.250

0.125

0.083

0.063

0.050

Seed 1

Mutation-Rate: 0.4
Tournament-Size: 4
Crossover-Rate: 0.6
Evaluation Limit: 1000 (=32 Generations)

Seed2 | Seed3

2

28

20

0

27

21

21

20

Seed4 | Seed5

21

20

22

30

Seed

Seed 6 | Seed 7 | Seed 8

34

34

22

17

21

15

28

17

Seed 9

30

16

22

32

9

Seed 10

5

21

20

21

25

Figure 29: Fitness scores of population-size exploration 2

Fixed parameters: tournament-size 4, crossover-rate: 0.6, mutation-rate:

Population-Size
16
32
48
64

80

Average
18.7
183
232
216

176

Median

20.5

21.0

21.5

215

17.5

Ratio

0.313

0.156

0.104

0.078

0.063

Seed 1

27

23

23

23

Mutation-Rate: 0.4
Tournament-Size: 5
Crossover-Rate: 0.6
Evaluation Limit: 1000 (=32 Generations)

Seed2 Seed3

21

17

35

35

23

20

21

17

30

27

Seed4 | Seed 5

4

31

20

28

23

26

31

6

4

Seed

Seed 6

19

6

16

28

9

Seed7 | Seed 8 | Seed 9

18

16

31

3

22

25

23

22

Seed 10

29

21

15

20

26

Figure 30: Fitness scores of population-size exploration 3

0.4

0.4

Fixed parameters: tournament-size 5, crossover-rate: 0.6, mutation-rate: 0.4

62

Good Settings Bad Settings

Static World 84 83 82 80 64 65 67 68

20000
DynamicWorld | 84 |75 |81 |78 |77 |79 |66 |77
simulation oo0s StatcWorld | 52 |48 |52 |47 |50 |45 | 45 | 42
Ll DynamicWorld | 54 |56 |56 |48 54 |56 |46 |52
StatcWorld | 28 |27 |30 |28 |29 |28 |24 |29

5000

Dynamic World | 35 35 37 40 39 32 31 34

Figure 31: Fitness scores of simulation iteration exploration

Static World Dynamic World

0 71 72 |75 |76 86.5 | 83 87 82.5

1 18 17 19 18 27 22 20 26

2 72 75 |76 |66 78 80 89 83

3 68 77 |70 |72 82 78 78 76

4 70 75 74 73 74 78 80 74

5 72 75 77 70 81 88 85 86

6 74 73 |73 |74 82 79 77 85

Number of
Second-Layer 7 71 76 75 |74 86 80 84 77.5
Neurons

8 77 70 72 74 83 73 71 76

9 72 67 |69 |77 78 82 78 81

10 70 68 |77 |69 81 75 85 62

11 71 64 71 70 45 74 72 70

12 68 68 |62 |76 50 75 48 42

13 64 67 69 61 67 73 41 73

14 60 40 67 34 50 43 61 46

Figure 32: Fitness scores of varying number of second-layer neurons

63

64

72
76

"38883

283953

388838

75

—
~

Figure 33: Networks with 0 hidden-layer neurons
Figure 34: Networks with 0 hidden-layer neurons

64

65

912
2.6 |\7
-20 [4
2014

Figure 35: Networks with 0 hidden-layer neurons

[N«
59 68

999985 " o1 703

6

6813
\5'2\

Figure 36: Networks with 0 hidden-layer neurons
65

66

.2|3 9815
7417 1215
4415 4216
7414 8.412 @
18 17
19615 2014
18.417 18415
1215 5614
3413 1415
(a) (b)
Figure 37: Networks with 1 hidden-layer neuron
2013 -115
2811 -8.814
19 L 18
19411 2011 /
16.211 17213
-2.817 112
0.8|6 114
(a) (b)

Figure 38: Networks with 1 hidden-layer neuron

6

(@)

67

22

612

1

g

813

16.

g

© id

[V N

< =
® 4 i ©
— o] ©
G <. 0.

Figure 39: Networks with 1 hidden-layer neuron

9

~
Y
< .H‘
< .
~ =]
© ~
~ o 6/6
= S

P93

)

b

(

)

a

(

812

1

811

1

g

gt

-3.211

0
O -
O,
O

95

)

a

(

Figure 40: Networks with 1 hidden-layer neuron

67

68

75
66

S n
n g
@ ° : o
- @ @ : S
— w \/ w
2 & - .
oo o ,(<Y mu o N = e mu
|I I : \\4@| | @I ‘W I) N\ \\Il , =
SRy S e 8R 18 = 3N 8] e A BSl oR- 8. 5
n o=
D000 - DO®O® &
.d =}
.d .]
= .1
h ~
: OO0 00 =
: ~
t)
= :
N - | |
S n
k -4
m S
w . =
t =
<) . e
: Z
— w_ :
<t : 3 :
F N
= & — s
= = \ = = :
—r/ > O~ Ulb oo/ wn\\mw: ;;Hn |/ o Wo
IR M = = w > mm/%m F

o ¢ M e-m\

68

69

B
7216

is|s
15212

.

38

3

Figure 43: Networks with 2 hidden-layer neurons

@
«©

gIiHE:

Figure 44: Networks with 2 hidden-layer neurons

"388888

69

70

Networks with 3 hidden-layer neurons

Figure 45

Networks with 3 hidden-layer neurons

Figure 46

70

71

78

Tway 8o/ Tho T
T =T

N e,

5.

-8

-6
-1

(b)

Networks with 3 hidden-layer neurons

Figure 47

Networks with 3 hidden-layer neurons

Figure 48

71

72

©_ L0,
315IVA42
00 N— =
08 0~ 0R0 NO
/852557 o208 R

R

"33883

OO WM44VA2I51X1536 SN ©Fom
B R A s mm\0240/sza4 oYaT
34 .vy 2ﬁ.m9__ 753 3159

M
O/ i

Networks with 4 hidden-layer neurons

Figure 49

N0 2526/4054
922

CWRO_F¥aics
PNt

H
O~

s 4574/4[7
O BRoN B0 oron Joln
oo OV 0500~ or o
o 2 v
QSVA 4X7 00\\2 Y

15 588:

Networks with 4 hidden-layer neurons

Figure 50

72

73

=S — Nov@ e o
—t! 0o -No TN oo
N m1zz/wwwm\msvm 7mom Qmem
. qw.__
13
N

6171/ NE™L om,

2000 —Oon®),
2261\8211; 2428

Networks with 4 hidden-layer neurons

Figure 51

o 1434X7an1 2713/4ze| P
sy 0 NGO S o— —=%0

©0R0m X TR 0nRO o005 R jn@oN
T a_uo.we a._.mQXQOQQ \wz17R1326

Q
o

Networks with 4 hidden-layer neurons

Figure 52

73

74

©
2

N

R~

500
05 o

.185 2 9172 28774

2070 Mg o @I HOT P AT 00
IEOIN O o onRl Y et Y s @Y nny/ DNERD
SERTY PTG RESET GeelRBiNas Srres

T

535588

Networks with 5 hidden-layer neurons

Figure 53

"3

o
R

N

o/ — O SR,
NS 9IRS w2
S PRTNR

23

\5141
<,

< RnyTe
23441

Networks with 5 hidden-layer neurons

Figure 54

oo mzéb}ﬁnxééemwﬁz P
IIIBI NS oY oo NORp S IO oy I84I
FaRES oaiTen YRR3L oot ety Pyels

g%mmwﬂu

81

Y
4m ror 2y
Soton

Ry 2

038

7 25
‘oaloN o0/ T 0
s

35939 oy
GnTyo RENER ¥8OGR

3

Networks with 5 hidden-layer neurons

Figure 55

74

5

ot

B2

~
HONNG IAUNOTT G ZE00, o™

o -, -
220, oI

e - et |52A2\mmm|m_u/mmwmu

P2

884

85

T oaNT/ o N
fonNglo®< oy
PP NNoa?

BST SrRNSxPrira.

i~ o

564

Omoe® 0ON—— —©,
B0 QO o
B e

green

Networks with 5 hidden-layer neurons

Figure 56

R

o™
e

T\ —="g=
25 95 th¥ee/Er 98

Onrtoa T v o Lt

i N
e XN e

Novoos/ I—00gs AoaRns BT TOs WCGnss \VNo@ow
FT7T/QOe2aT SREZGT, Corne o TR\ T T VeRS

"ELEde

¥ .¥

RN

N o o

2N <+ 3o/
%5 §8 8952 5 26
A /

Networks with 6 hidden-layer neurons

Figure 57

D nig o

o

Networks with 6 hidden-layer neurons

Figure 58

5

76

oo~ 2N
o o o og @@
5™ o8& oF R IR £o

mofel | aralion/ 20 ¢ IngeonlnNo oy ooy
N0 59w e OB 50T pRNN—N oY onos,. | TOR0oS
PN SINNPON RN SrenTe SrGTRR\NoSeRS

o
8

green

VA »
FhoLeT Y oo | o oo™
0C0— Neo—mN @Y—om| Saswe®
oo e Rels . SRR RaRees

F3388:

v N\ A
oF/¢ &
2 ISl

~OCo

Networks with 6 hidden-layer neurons

Figure 59

QP

o ¥, Nvo PN on /o
=5 oo \manne oa/ =
Qs 8~ S200 q @

R L e S
0. R¥ o0

<
&
4
5

OO, 105 ,

00,08 OO) OO 00 T e _Na@ [genn
SNToNE/ SaPONT —a NN BT NON BTTNCG \ 0= 00
FraPo CRNre FIogos noNen oS30gy | RSN e

"808888

Networks with 6 hidden-layer neurons

Figure 60

76

	Introduction
	Motivation
	Overview
	Related work
	Outline

	Genetic Algorithms
	Evolution-inspired algorithms
	A genetic algorithm cycle
	Hyperparameters

	Model
	Virtual insect environment
	Spiking neural network
	Architecture
	Neural dynamics

	Fitness function

	Optimisation Tools
	BehaviorSearch
	Learning-to-learn (L2L)
	Comparison

	Search Configurations
	Hyperparameter prefiltering
	Main investigation
	Static and dynamic world
	Varying network topology

	Results and Evaluation
	Hyperparameter prefiltering
	Main investigation
	BehaviorSearch
	L2L
	Comparison

	Static and dynamic world
	Varying network topology

	Network Analysis
	2 hidden-layer neurons
	6 hidden-layer neurons
	1 hidden-layer neuron
	0 hidden-layer neurons

	Multi-Ant Model
	Conclusion
	Summary
	Outlook

	References
	Appendices

